Full Plant Scale Analysis of Natural Gas Fired Power Plants with Pre-Combustion CO2 Capture and Chemical Looping Reforming (CLR)

被引:12
|
作者
Nazir, Shareq Mohd [1 ]
Bolland, Olav [1 ]
Amini, Shahriar [1 ,2 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Energy & Proc Engn, N-7491 Trondheim, Norway
[2] SINTEF Mat & Chem, Trondheim, Norway
关键词
pre-combustion CO2 capture; chemical looping reforming; combined cycle power plants; full plant scale analysis; process integration; GENERATION SYSTEM; COMBINED CYCLES; CARBON CAPTURE; HYDROGEN;
D O I
10.1016/j.egypro.2017.03.1350
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this study, first of its kind complete plant scale integration of pre-combustion CO2 capture method with Chemical Looping Reforming (CLR) of Natural Gas (NG), Water Gas Shift (WGS) process, CO2 capture and CO2 compression in a combined cycle power plant has been presented. The CLR consisted of oxidation and fuel reactor. The oxidation reactor oxidizes the metal oxygen carrier with compressed air and produces an oxygen depleted air stream (N-2 stream) as by-product. The fuel reactor reforms the NG with the metal oxide in presence of steam to produce syngas. The syngas is further subjected to WGS and CO2 capture using a-MDEA, to prepare a H-2-rich fuel, which is combusted in the Gas Turbine (GT) system. The heat from cooling of process streams in the pre-combustion CO2 capture method, is used to prepare saturated low pressure steam, fraction of which is used in reboiler to regenerate the amine for CO2 capture, and the remainder is expanded in Steam Turbine (ST) to generate power. The power plant is a combined cycle with two GT, two Heat Recovery Steam Generators (HRSG) and one ST. 12% of air entering the GT is used in the oxidation reactor of CLR, and equivalent amount of N-2 stream is compressed and added as diluent in the GT. The overall process was integrated and analysed at full load conditions. The current process has also been compared with Natural Gas Combined Cycle (NGCC) plant without CO2 capture. The net electric efficiency of the power plant with pre-combustion CO2 capture in this study is 43.1%, which is 15.3%-points less than the NGCC plant without capture. Major energy penalty in the process comes from air compressor, the diluent N-2 stream compressor and due to low degree of process integration to avoid complexity. (C) 2017 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:2146 / 2155
页数:10
相关论文
共 50 条
  • [1] Analysis of Combined Cycle Power Plants with Chemical Looping Reforming of Natural Gas and Pre-Combustion CO2 Capture
    Nazir, Shareq Mohd
    Bolland, Olav
    Amini, Shahriar
    ENERGIES, 2018, 11 (01):
  • [2] Reforming natural gas for CO2 pre-combustion capture in combined cycle power plant
    Amann, Jean-Marc
    Kanniche, Mohamed
    Bouallou, Chakib
    CLEAN TECHNOLOGIES AND ENVIRONMENTAL POLICY, 2009, 11 (01) : 67 - 76
  • [3] Reforming natural gas for CO2 pre-combustion capture in combined cycle power plant
    Jean-Marc Amann
    Mohamed Kanniche
    Chakib Bouallou
    Clean Technologies and Environmental Policy, 2009, 11 : 67 - 76
  • [4] Reforming Natural Gas for CO2 Pre-Combustion Capture in Trinary Cycle Power Plant
    Rogalev, Nikolay
    Rogalev, Andrey
    Kindra, Vladimir
    Zlyvko, Olga
    Kovalev, Dmitriy
    Energies, 2024, 17 (22)
  • [5] Chemical Looping for Pre-combustion CO2 Capture - Performance and Cost Analysis
    Mantripragada, Hari C.
    Rubin, Edward S.
    GHGT-11, 2013, 37 : 618 - 625
  • [6] Chemical looping for pre-combustion and post-combustion CO2 capture
    Mantripragada, Hari C.
    Rubin, Edward S.
    13TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-13, 2017, 114 : 6403 - 6410
  • [7] Inherent CO2 capture using chemical looping combustion in a natural gas fired power cycle
    Brandvoll, O
    Bolland, O
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2004, 126 (02): : 316 - 321
  • [8] Environmental assessment of IGCC power plants with pre-combustion CO2 capture by chemical & calcium looping methods
    Petrescu, Letitia
    Cormos, Calin-Cristian
    JOURNAL OF CLEANER PRODUCTION, 2017, 158 : 233 - 244
  • [9] CO2 capture by pre-combustion decarbonisation of natural gas
    Audus, H
    Kaarstad, O
    Skinner, G
    GREENHOUSE GAS CONTROL TECHNOLOGIES, 1999, : 557 - 562
  • [10] Life-cycle performance of natural gas power plants with pre-combustion CO2 capture
    Petrakopoulou, Fontina
    Iribarren, Diego
    Dufour, Javier
    GREENHOUSE GASES-SCIENCE AND TECHNOLOGY, 2015, 5 (03): : 268 - 276