Artificial Intelligence-Based Prediction of Key Textural Properties from LUCAS and ICRAF Spectral Libraries

被引:4
|
作者
Gouda, Mohamed Zakaria [1 ]
Nagihi, El Mehdi [2 ]
Khiari, Lotfi [1 ,3 ]
Gallichand, Jacques [3 ]
Ismail, Mahmoud [2 ]
机构
[1] Mohammed VI Polytech Univ, Soil & Fertilizer Res Africa, Benguerir 43150, Morocco
[2] Mohammed VI Polytech Univ, Emines Sch Ind Management, Benguerir 43150, Morocco
[3] Laval Univ, Dept Soil Sci & Agrifood Engn, Quebec City, PQ G1V 0A6, Canada
来源
AGRONOMY-BASEL | 2021年 / 11卷 / 08期
基金
加拿大自然科学与工程研究理事会;
关键词
textural group; fine; medium and coarse texture; vis-NIR spectrum; dry chemistry; chemometrics; machine learning; INFRARED REFLECTANCE SPECTROSCOPY; SOIL;
D O I
10.3390/agronomy11081550
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Soil texture is a key soil property influencing many agronomic practices including fertilization and liming. Therefore, an accurate estimation of soil texture is essential for adopting sustainable soil management practices. In this study, we used different machine learning algorithms trained on vis-NIR spectra from existing soil spectral libraries (ICRAF and LUCAS) to predict soil textural fractions (sand-silt-clay %). In addition, we predicted the soil textural groups (G1: Fine, G2: Medium, and G3: Coarse) using routine chemical characteristics as auxiliary. With the ICRAF dataset, multilayer perceptron resulted in good predictions for sand and clay (R-2 = 0.78 and 0.85, respectively) and categorical boosting outperformed the other algorithms (random forest, extreme gradient boosting, linear regression) for silt prediction (R-2 = 0.81). For the LUCAS dataset, categorical boosting consistently showed a high performance for sand, silt, and clay predictions (R-2 = 0.79, 0.76, and 0.85, respectively). Furthermore, the soil texture groups (G1, G2, and G3) were classified using the light gradient boosted machine algorithm with a high accuracy (83% and 84% for ICRAF and LUCAS, respectively). These results, using spectral data, are very promising for rapid diagnosis of soil texture and group in order to adjust agricultural practices.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Prediction of Pyrolysis Kinetics of Biomass: New Insights from Artificial Intelligence-Based Modeling
    Dong, Lei
    Wang, RanRan
    Liu, PeiDe
    Sarvazizi, Saeed
    INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING, 2022, 2022
  • [22] Prediction of the Energy Demand of a Hotel Using an Artificial Intelligence-Based Model
    Casteleiro-Roca, Jose-Luis
    Francisco Gomez-Gonzalez, Jose
    Luis Calvo-Rolle, Jose
    Jove, Esteban
    Quintian, Hector
    Acosta Martin, Juan Francisco
    Gonzalez Perez, Sara
    Gonzalez Diaz, Benjamin
    Calero-Garcia, Francisco
    Albino Mendez-Perez, Juan
    HYBRID ARTIFICIAL INTELLIGENT SYSTEMS (HAIS 2018), 2018, 10870 : 586 - 596
  • [23] Artificial Intelligence-based Digital Fault Diagnosis and Prediction for Power Grids
    Niu, Deling
    Lu, Tonghe
    Wei, Changchao
    Li, Wei
    Wang, Wenjie
    Applied Mathematics and Nonlinear Sciences, 2024, 9 (01)
  • [24] Artificial Intelligence-based Irradiance and Power consumption prediction for PV installations
    Valeria-Aguirre, Pablo
    Risso, Nathalie
    Campos, Pedro G.
    Lagos-Carvajal, Karla
    Caro, Isidora A.
    Salgado, Fabricio
    2021 IEEE CHILEAN CONFERENCE ON ELECTRICAL, ELECTRONICS ENGINEERING, INFORMATION AND COMMUNICATION TECHNOLOGIES (IEEE CHILECON 2021), 2021, : 393 - 398
  • [25] Computational and artificial intelligence-based approaches for drug metabolism and transport prediction
    Dudas, Balint
    Miteva, Maria A.
    TRENDS IN PHARMACOLOGICAL SCIENCES, 2024, 45 (01) : 39 - 55
  • [26] A scoping review of artificial intelligence-based methods for diabetes risk prediction
    Mohsen, Farida
    Al-Absi, Hamada R. H.
    Yousri, Noha A.
    El Hajj, Nady
    Shah, Zubair
    NPJ DIGITAL MEDICINE, 2023, 6 (01)
  • [27] Digitisation of electrocardiographic images enable artificial intelligence-based mortality prediction
    Patlatzoglou, K.
    Sau, A.
    Zeidaabadi, B.
    Pastika, L.
    Peters, N.
    Kramer, D.
    Waks, J.
    Ng, F.
    EUROPEAN HEART JOURNAL, 2024, 45
  • [28] Artificial Intelligence-Based Ensemble Model for Rapid Prediction of Heart Disease
    Harika N.
    Swamy S.R.
    Nilima
    SN Computer Science, 2021, 2 (6)
  • [29] Artificial intelligence-based molecular property prediction of photosensitising effects of drugs
    Hofmann, Amun G.
    Weber, Benedikt
    Ibbotson, Sally
    Agibetov, Asan
    JOURNAL OF DRUG TARGETING, 2025, 33 (04) : 556 - 561
  • [30] Five critical quality criteria for artificial intelligence-based prediction models
    Van Royen, Florien S.
    Asselbergs, Folkert W.
    Alfonso, Fernando
    Vardas, Panos
    Van Smeden, Maarten
    EUROPEAN HEART JOURNAL, 2023, 44 (46) : 4831 - 4834