A note on the asymptotic number of Latin rectangles

被引:3
|
作者
Skau, I [1 ]
机构
[1] Telemark Coll, Inst Math, N-3800 Bo, Norway
关键词
D O I
10.1006/eujc.1998.0221
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The enumeration problem of Latin rectangles is formulated in terms of permanents, and two 'hard' inequalities of permanents are applied in a squeezing manner, both giving and suggesting asymptotic formulas. (C) 1998 Academic Press.
引用
收藏
页码:617 / 620
页数:4
相关论文
共 50 条
  • [41] A NOTE ON EQUIVALENT CIRCLES, SQUARES, AND RECTANGLES
    BJARNGARD, BE
    SIDDON, RL
    MEDICAL PHYSICS, 1982, 9 (02) : 258 - 260
  • [42] COVERING POLYGONS WITH MINIMUM NUMBER OF RECTANGLES
    LEVCOPOULOS, C
    LINGAS, A
    LECTURE NOTES IN COMPUTER SCIENCE, 1984, 166 : 63 - 72
  • [43] A Congruence Connecting Latin Rectangles and Partial Orthomorphisms
    Douglas S. Stones
    Ian M. Wanless
    Annals of Combinatorics, 2012, 16 : 349 - 365
  • [44] Cocyclic Hadamard matrices over Latin rectangles
    Alvarez, V
    Falcon, R. M.
    Frau, M. D.
    Gudiel, F.
    Guemes, B.
    EUROPEAN JOURNAL OF COMBINATORICS, 2019, 79 : 75 - 96
  • [45] COUNTING 3-LINE LATIN RECTANGLES
    GESSEL, IM
    LECTURE NOTES IN MATHEMATICS, 1986, 1234 : 106 - 111
  • [46] Enumeration of Sets of Mutually Orthogonal Latin Rectangles
    Jager, Gerold
    Markstrom, Klas
    Ohman, Lars-Daniel
    Shcherbak, Denys
    ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (01):
  • [47] A Congruence Connecting Latin Rectangles and Partial Orthomorphisms
    Stones, Douglas S.
    Wanless, Ian M.
    ANNALS OF COMBINATORICS, 2012, 16 (02) : 349 - 365
  • [48] Computing Autotopism Groups of Partial Latin Rectangles
    Stones R.J.
    Falcón R.M.
    Kotlar D.
    Marbach T.G.
    ACM Journal of Experimental Algorithmics, 2020, 25
  • [49] GENERALIZED LATIN RECTANGLES .2. EMBEDDING
    ANDERSEN, LD
    HILTON, AJW
    DISCRETE MATHEMATICS, 1980, 31 (03) : 235 - 260
  • [50] EXTENDING INCOMPLETE LATIN RECTANGLES - PRELIMINARY REPORT
    CRUSE, AB
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (03): : A363 - A364