A note on the asymptotic number of Latin rectangles

被引:3
|
作者
Skau, I [1 ]
机构
[1] Telemark Coll, Inst Math, N-3800 Bo, Norway
关键词
D O I
10.1006/eujc.1998.0221
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The enumeration problem of Latin rectangles is formulated in terms of permanents, and two 'hard' inequalities of permanents are applied in a squeezing manner, both giving and suggesting asymptotic formulas. (C) 1998 Academic Press.
引用
收藏
页码:617 / 620
页数:4
相关论文
共 50 条
  • [21] ENUMERATION OF TRUNCATED LATIN RECTANGLES
    LIGHT, FW
    FIBONACCI QUARTERLY, 1979, 17 (01): : 34 - 36
  • [22] Maximal orthogonal Latin rectangles
    Horak, P
    Rosa, A
    Siran, J
    ARS COMBINATORIA, 1997, 47 : 129 - 145
  • [23] Latin rectangles and quadrature formulas
    Dobrovol'skii, N. M.
    Dobrovol'skii, N. N.
    Rebrova, I. Yu.
    Balaba, I. N.
    EUROPEAN JOURNAL OF COMBINATORICS, 2019, 80 : 82 - 88
  • [24] JOINTLY EXTENDABLE LATIN RECTANGLES
    HORAK, P
    KREHER, DL
    ROSA, A
    UTILITAS MATHEMATICA, 1989, 36 : 193 - 195
  • [25] Permanents, matchings and Latin rectangles
    Wanless, IM
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1999, 59 (01) : 169 - 170
  • [26] Enumerating partial Latin rectangles
    Falcon, Raul M.
    Stones, Rebecca J.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2020, 27 (02): : 1 - 41
  • [27] A RESULT ON GENERALIZED LATIN RECTANGLES
    DENG, CL
    LIM, CK
    DISCRETE MATHEMATICS, 1988, 72 (1-3) : 71 - 80
  • [28] ON THE NUMBER OF 2-LINE AND 3-LINE LATIN RECTANGLES - AN ALTERNATIVE APPROACH
    PRANESACHAR, CR
    DISCRETE MATHEMATICS, 1982, 38 (01) : 79 - 86
  • [29] NOTE ON TILING RECTANGLES WITH DOMINOES
    READ, RC
    FIBONACCI QUARTERLY, 1980, 18 (01): : 24 - 27
  • [30] On the Number of Tilings of a Square by Rectangles
    Jim Conant
    Tim Michaels
    Annals of Combinatorics, 2014, 18 : 21 - 34