Homoclinic Ω-explosion and domains of hyperbolicity

被引:3
|
作者
Sten'kin, OV [1 ]
Shil'nikov, LP [1 ]
机构
[1] NI Lobachevskii State Univ, Natl Res Inst Appl Math & Cybernet, Nizhnii Novgorod, Russia
关键词
D O I
10.1070/SM1998v189n04ABEH000315
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The existence of domains of hyperbolicity is proved for general one-parameter families of multidimensional systems that undergo-a homoclinic Omega-explosion and the structure of the hyperbolic sets is studied for such families.
引用
收藏
页码:603 / 622
页数:20
相关论文
共 50 条
  • [41] On the density of hyperbolicity and homoclinic bifurcations for 3D-diffeomorphisms in attracting regions
    Pujals, ER
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2006, 16 (01) : 179 - 226
  • [42] Characterization of cycle domains via Kobayashi hyperbolicity
    Fels, G
    Huckleberry, A
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2005, 133 (01): : 121 - 144
  • [43] Hyperbolicity versus non-hyperbolic ergodic measures inside homoclinic classes
    Cheng, Cheng
    Crovisier, Sylvain
    Gan, Shaobo
    Wang, Xiaodong
    Yang, Dawei
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2019, 39 : 1805 - 1823
  • [44] Study of a homoclinic canard explosion from a degenerate center
    Qin, Bo-Wei
    Chung, Kwok-Wai
    Algaba, Antonio
    Rodriguez-Luis, Alejandro J.
    APPLIED MATHEMATICS LETTERS, 2022, 132
  • [45] Synchronization domains in arrays of chaotic homoclinic systems
    Arecchi, FT
    Allaria, E
    Leyva, I
    Boccaletti, S
    2003 INTERNATIONAL CONFERENCE PHYSICS AND CONTROL, VOLS 1-4, PROCEEDINGS: VOL 1: PHYSICS AND CONTROL: GENERAL PROBLEMS AND APPLICATIONS; VOL 2: CONTROL OF OSCILLATIONS AND CHAOS; VOL 3: CONTROL OF MICROWORLD PROCESSES. NANO- AND FEMTOTECHNOLOGIES; VOL 4: NONLINEAR DYNAMICS AND CONTROL, 2003, : 539 - 547
  • [46] Gromov (non-)hyperbolicity of certain domains in Cn
    Nikolov, Nikolai
    Thomas, Pascal J.
    Trybula, Maria
    FORUM MATHEMATICUM, 2016, 28 (04) : 783 - 794
  • [47] Hyperbolicity and Vitali properties of unbounded domains in Banach spaces
    Nguyen Quang Dieu
    Nguyen Van Khiem
    Le Thanh Hung
    ANNALES POLONICI MATHEMATICI, 2017, 119 (03) : 255 - 273
  • [48] Homoclinic tangencies of an arbitrary order in newhouse domains
    Gonchenko S.V.
    Turaev D.V.
    Shil'Nikov L.P.
    Journal of Mathematical Sciences, 2001, 105 (1) : 1738 - 1778
  • [49] Gromov hyperbolicity and the Kobayashi metric on strictly pseudoconvex domains
    Balogh, ZM
    Bonk, M
    COMMENTARII MATHEMATICI HELVETICI, 2000, 75 (03) : 504 - 533
  • [50] Gromov hyperbolicity of Denjoy domains with hyperbolic and quasihyperbolic metrics
    Hasto, Peter
    Linden, Henri
    Portilla, Ana
    Rodriguez, Jose M.
    Touris, Eva
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2012, 64 (01) : 247 - 261