Stability and instability in the Gray-Scott model: The case of equal diffusivities

被引:32
|
作者
Hale, JK [1 ]
Peletier, LA
Troy, WC
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Leiden Univ, Inst Math, NL-2300 RA Leiden, Netherlands
[3] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
关键词
homoclinic orbits; heteroclinic orbits; stability; reaction-diffusion equations; Gray-Scott model;
D O I
10.1016/S0893-9659(99)00035-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that a family of explicit stationary homoclinic orbits of the Gray-Scott system of cubic autocatalysis is unstable, and that an explicit heteroclinic orbit of this system is asymptotically, and exponentially stable. (C) 1999 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:59 / 65
页数:7
相关论文
共 50 条
  • [41] Accurate Approximation of Homoclinic Solutions in Gray-Scott Kinetic Model
    Kuznetsov, Yu. A.
    Meijer, H. G. E.
    Al-Hdaibat, B.
    Govaerts, W.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (09):
  • [42] Some nonexistence results of stationary solutions for the Gray-Scott model
    Sato, Norihiro
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 65 (08) : 1644 - 1653
  • [43] Analyzing Pattern Formation in the Gray-Scott Model: An XPPAUT Tutorial
    Gandy, Demi L.
    Nelson, Martin R.
    SIAM REVIEW, 2022, 64 (03) : 728 - 747
  • [44] Numerical study of pattern formation in an extended Gray-Scott model
    Wang, Weiming
    Lin, Yezhi
    Yang, Feng
    Zhang, Lei
    Tan, Yongji
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (04) : 2016 - 2026
  • [45] NUMERICAL TREATMENT OF GRAY-SCOTT MODEL WITH OPERATOR SPLITTING METHOD
    Karaagac, Berat
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (07): : 2373 - 2386
  • [46] The existence and stability of spike equilibria in the one-dimensional Gray-Scott model on a finite domain
    Kolokolnikov, T
    Ward, MJ
    Wei, JC
    APPLIED MATHEMATICS LETTERS, 2005, 18 (08) : 951 - 956
  • [47] Standing wave-like patterns in the Gray-Scott model
    Berenstein, Igal
    CHAOS, 2015, 25 (06)
  • [48] Pattern formation in the one-dimensional Gray-Scott model
    Doelman, A
    Kaper, TJ
    Zegeling, PA
    NONLINEARITY, 1997, 10 (02) : 523 - 563
  • [49] DYNAMICS OF THREE-COMPONENT REVERSIBLE GRAY-SCOTT MODEL
    You, Yuncheng
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2010, 14 (04): : 1671 - 1688
  • [50] Impulsive Control and Synchronization of Spatiotemporal Chaos in the Gray-Scott Model
    Zhang, Kexue
    Liu, Xinzhi
    Xie, Wei-Chau
    INTERDISCIPLINARY TOPICS IN APPLIED MATHEMATICS, MODELING AND COMPUTATIONAL SCIENCE, 2015, 117 : 549 - 555