Stability and instability in the Gray-Scott model: The case of equal diffusivities

被引:32
|
作者
Hale, JK [1 ]
Peletier, LA
Troy, WC
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Leiden Univ, Inst Math, NL-2300 RA Leiden, Netherlands
[3] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
关键词
homoclinic orbits; heteroclinic orbits; stability; reaction-diffusion equations; Gray-Scott model;
D O I
10.1016/S0893-9659(99)00035-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that a family of explicit stationary homoclinic orbits of the Gray-Scott system of cubic autocatalysis is unstable, and that an explicit heteroclinic orbit of this system is asymptotically, and exponentially stable. (C) 1999 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:59 / 65
页数:7
相关论文
共 50 条
  • [21] Pattern selection of three components Gray-Scott model
    Rahim, Huzaif
    Iqbal, Naveed
    Cong, Cong
    Ding, Zejun
    SECOND INTERNATIONAL CONFERENCE ON PHYSICS, MATHEMATICS AND STATISTICS, 2019, 1324
  • [22] Wave-splitting in the bistable Gray-Scott model
    Rasmussen, KE
    Mazin, W
    Mosekilde, E
    Dewel, G
    Borckmans, P
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (06): : 1077 - 1092
  • [23] Three-variable reversible Gray-Scott model
    Mahara, H
    Suematsu, NJ
    Yamaguchi, T
    Ohgane, K
    Nishiura, Y
    Shimomura, M
    JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (18): : 8968 - 8972
  • [24] SPATIAL PATTERN OF DISCRETE AND ULTRADISCRETE GRAY-SCOTT MODEL
    Matsuya, Keisuke
    Murata, Mikio
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (01): : 173 - 187
  • [25] Spatio-temporal chaos for the Gray-Scott model
    Nishiura, Y
    Ueyama, D
    PHYSICA D-NONLINEAR PHENOMENA, 2001, 150 (3-4) : 137 - 162
  • [26] Identification of the Gray-Scott Model via Deterministic Learning
    Dong, Xunde
    Wang, Cong
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2021, 31 (04):
  • [27] Phase portraits and bifurcation diagram of the Gray-Scott model
    Chen, Ting
    Li, Shimin
    Llibre, Jaume
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 496 (02)
  • [28] Chaotic motion of propagating pulses in the Gray-Scott model
    Yadome, Masaaki
    Ueda, Kei-Ichi
    Nagayama, Masaharu
    PHYSICAL REVIEW E, 2011, 83 (05):
  • [29] Entropy balance in distributed reversible Gray-Scott model
    Mahara, Hitoshi
    Yamaguchi, Tomohiko
    PHYSICA D-NONLINEAR PHENOMENA, 2010, 239 (11) : 729 - 734
  • [30] Existence and stability of multiple spot solutions for the Gray-Scott model in R2
    Wei, JC
    Winter, M
    EQUADIFF 2003: INTERNATIONAL CONFERENCE ON DIFFERENTIAL EQUATIONS, 2005, : 813 - 818