ON MAXIMAL REGULARITY ESTIMATES FOR DISCONTINUOUS GALERKIN TIME-DISCRETE METHODS

被引:3
|
作者
Akrivis, Georgios [1 ,2 ]
Makridakis, Charalambos [2 ,3 ,4 ]
机构
[1] Univ Ioannina, Dept Comp Sci & Engn, Ioannina 45110, Greece
[2] Fdn Res & Technol Hellas FORTH, Inst Appl & Computat Math, Iraklion 70013, Crete, Greece
[3] Univ Crete, Dept Math & Appl Math, Modeling & Sci Comp, Iraklion 70013, Crete, Greece
[4] Univ Sussex, MPS, Brighton BN1 9QH, E Sussex, England
关键词
a posteriori error estimates; discontinuous Galerkin methods; parabolic equations; maximal parabolic regularity; discrete maximal parabolic regularity; Radau IIA methods; FOURIER MULTIPLIER THEOREMS; FINITE-ELEMENT METHODS; PARABOLIC EQUATIONS; DISCRETIZATIONS;
D O I
10.1137/20M1383781
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the discretization of differential equations satisfying the maximal parabolic L-P-regularity property in Banach spaces by discontinuous Galerkin methods. We use the maximal regularity framework to establish that the discontinuous Galerkin methods preserve the maximal L-P-regularity, satisfy corresponding a posteriori error estimates, and the estimators are of optimal asymptotic order of convergence. In our proofs, we use a suitable interpretation of the discontinuous Galerkin methods as modified Radau IIA methods.
引用
收藏
页码:180 / 194
页数:15
相关论文
共 50 条
  • [31] Adaptive stabilization of discontinuous Galerkin methods for nonlinear elasticity: Analytical estimates
    Ten Eyck, Alex
    Celiker, Fatih
    Lew, Adrian
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2008, 197 (33-40) : 2989 - 3000
  • [32] Optimal Order Error Estimates for Discontinuous Galerkin Methods for the Wave Equation
    Weimin Han
    Limin He
    Fei Wang
    Journal of Scientific Computing, 2019, 78 : 121 - 144
  • [33] L∞-error estimates of discontinuous Galerkin methods with theta time discretization scheme for an evolutionary HJB equations
    Boulaaras, Salah
    Haiour, Mohamed
    Le Hocine, Med Amine Bencheick
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (12) : 4310 - 4319
  • [34] On discontinuous Galerkin methods
    Zienkiewicz, OC
    Taylor, RL
    Sherwin, SJ
    Peiró, J
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2003, 58 (08) : 1119 - 1148
  • [35] Efficient time discretization for local discontinuous Galerkin methods
    Xia, Yinhua
    Xu, Yan
    Shu, Chi-Wang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2007, 8 (03): : 677 - 693
  • [36] Error Estimates to Smooth Solutions of Semi-Discrete Discontinuous Galerkin Methods with Quadrature Rules for Scalar Conservation Laws
    Huang, Juntao
    Shu, Chi-Wang
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (02) : 467 - 488
  • [37] Dispersion and Dissipation Errors of Two Fully Discrete Discontinuous Galerkin Methods
    Yang, He
    Li, Fengyan
    Qiu, Jianxian
    JOURNAL OF SCIENTIFIC COMPUTING, 2013, 55 (03) : 552 - 574
  • [38] Dispersion and Dissipation Errors of Two Fully Discrete Discontinuous Galerkin Methods
    He Yang
    Fengyan Li
    Jianxian Qiu
    Journal of Scientific Computing, 2013, 55 : 552 - 574
  • [39] Convergence and error estimates for time-discrete consensus-based optimization algorithms
    Ha, Seung-Yeal
    Jin, Shi
    Kim, Doheon
    NUMERISCHE MATHEMATIK, 2021, 147 (02) : 255 - 282
  • [40] Convergence and error estimates for time-discrete consensus-based optimization algorithms
    Seung-Yeal Ha
    Shi Jin
    Doheon Kim
    Numerische Mathematik, 2021, 147 : 255 - 282