ON MAXIMAL REGULARITY ESTIMATES FOR DISCONTINUOUS GALERKIN TIME-DISCRETE METHODS

被引:3
|
作者
Akrivis, Georgios [1 ,2 ]
Makridakis, Charalambos [2 ,3 ,4 ]
机构
[1] Univ Ioannina, Dept Comp Sci & Engn, Ioannina 45110, Greece
[2] Fdn Res & Technol Hellas FORTH, Inst Appl & Computat Math, Iraklion 70013, Crete, Greece
[3] Univ Crete, Dept Math & Appl Math, Modeling & Sci Comp, Iraklion 70013, Crete, Greece
[4] Univ Sussex, MPS, Brighton BN1 9QH, E Sussex, England
关键词
a posteriori error estimates; discontinuous Galerkin methods; parabolic equations; maximal parabolic regularity; discrete maximal parabolic regularity; Radau IIA methods; FOURIER MULTIPLIER THEOREMS; FINITE-ELEMENT METHODS; PARABOLIC EQUATIONS; DISCRETIZATIONS;
D O I
10.1137/20M1383781
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the discretization of differential equations satisfying the maximal parabolic L-P-regularity property in Banach spaces by discontinuous Galerkin methods. We use the maximal regularity framework to establish that the discontinuous Galerkin methods preserve the maximal L-P-regularity, satisfy corresponding a posteriori error estimates, and the estimators are of optimal asymptotic order of convergence. In our proofs, we use a suitable interpretation of the discontinuous Galerkin methods as modified Radau IIA methods.
引用
收藏
页码:180 / 194
页数:15
相关论文
共 50 条
  • [21] Maximal regularity of discrete and continuous time evolution equations
    Blunck, S
    STUDIA MATHEMATICA, 2001, 146 (02) : 157 - 176
  • [22] Semilinear evolution equations on discrete time and maximal regularity
    Cuevas, Claudio
    Lizama, Carlos
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 361 (01) : 234 - 245
  • [23] Discrete maximum principle for interior penalty discontinuous Galerkin methods
    Horvath, Tamas L.
    Mincsovics, Miklos E.
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2013, 11 (04): : 664 - 679
  • [24] TIME-DISCRETE NETWORKS
    DVORAK, V
    ELECTRONICS LETTERS, 1968, 4 (11) : 222 - &
  • [25] ON A POSTERIORI ERROR ESTIMATES FOR SPACE TIME DISCONTINUOUS GALERKIN METHOD
    Dolejsi, Vit
    Roskovec, Filip
    Vlasak, Miloslav
    PROCEEDINGS OF THE CONFERENCE ALGORITMY 2016, 2016, : 125 - 134
  • [26] Error analysis of discontinuous Galerkin methods for the Stokes problem under minimal regularity
    Badia, S.
    Codina, R.
    Gudi, T.
    Guzman, J.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2014, 34 (02) : 800 - 819
  • [27] Optimal Order Error Estimates for Discontinuous Galerkin Methods for the Wave Equation
    Han, Weimin
    He, Limin
    Wang, Fei
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 78 (01) : 121 - 144
  • [28] A POSTERIORI ERROR ESTIMATES FOR DISCONTINUOUS GALERKIN METHODS ON POLYGONAL AND POLYHEDRAL MESHES
    Cangiani, Andrea
    Dong, Zhaonan
    Georgoulis, Emmanuil H.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2023, 61 (05) : 2352 - 2380
  • [29] L∞ error estimates of discontinuous Galerkin methods for delay differential equations
    Li, Dongfang
    Zhang, Chengjian
    APPLIED NUMERICAL MATHEMATICS, 2014, 82 : 1 - 10
  • [30] A posteriori error estimates for local discontinuous Galerkin methods of linear elasticity
    Chen, Yun-Cheng
    Huang, Jian-Guo
    Xu, Yi-Feng
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2011, 45 (12): : 1857 - 1862