ON MAXIMAL REGULARITY ESTIMATES FOR DISCONTINUOUS GALERKIN TIME-DISCRETE METHODS

被引:3
|
作者
Akrivis, Georgios [1 ,2 ]
Makridakis, Charalambos [2 ,3 ,4 ]
机构
[1] Univ Ioannina, Dept Comp Sci & Engn, Ioannina 45110, Greece
[2] Fdn Res & Technol Hellas FORTH, Inst Appl & Computat Math, Iraklion 70013, Crete, Greece
[3] Univ Crete, Dept Math & Appl Math, Modeling & Sci Comp, Iraklion 70013, Crete, Greece
[4] Univ Sussex, MPS, Brighton BN1 9QH, E Sussex, England
关键词
a posteriori error estimates; discontinuous Galerkin methods; parabolic equations; maximal parabolic regularity; discrete maximal parabolic regularity; Radau IIA methods; FOURIER MULTIPLIER THEOREMS; FINITE-ELEMENT METHODS; PARABOLIC EQUATIONS; DISCRETIZATIONS;
D O I
10.1137/20M1383781
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the discretization of differential equations satisfying the maximal parabolic L-P-regularity property in Banach spaces by discontinuous Galerkin methods. We use the maximal regularity framework to establish that the discontinuous Galerkin methods preserve the maximal L-P-regularity, satisfy corresponding a posteriori error estimates, and the estimators are of optimal asymptotic order of convergence. In our proofs, we use a suitable interpretation of the discontinuous Galerkin methods as modified Radau IIA methods.
引用
收藏
页码:180 / 194
页数:15
相关论文
共 50 条