Bayesian Regularized Quantile Regression

被引:100
|
作者
Li, Qing [1 ]
Xi, Ruibin [2 ]
Lin, Nan [1 ]
机构
[1] Washington Univ, Dept Math, St Louis, MO 63130 USA
[2] Harvard Univ, Sch Med, Ctr Biomed Informat, Cambridge, MA 02138 USA
来源
BAYESIAN ANALYSIS | 2010年 / 5卷 / 03期
关键词
Quantile regression; Regularization; Gibbs sampler; Bayesian analysis; Lasso; Elastic net; Group lasso; VARIABLE SELECTION; MODEL SELECTION; SHRINKAGE;
D O I
10.1214/10-BA521
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Regularization, e. g. lasso, has been shown to be effective in quantile regression in improving the prediction accuracy (Li and Zhu 2008; Wu and Liu 2009). This paper studies regularization in quantile regressions from a Bayesian perspective. By proposing a hierarchical model framework, we give a generic treatment to a set of regularization approaches, including lasso, group lasso and elastic net penalties. Gibbs samplers are derived for all cases. This is the first work to discuss regularized quantile regression with the group lasso penalty and the elastic net penalty. Both simulated and real data examples show that Bayesian regularized quantile regression methods often outperform quantile regression without regularization and their non-Bayesian counterparts with regularization.
引用
收藏
页码:533 / 556
页数:24
相关论文
共 50 条
  • [41] Bayesian Endogenous Tobit Quantile Regression
    Kobayashi, Genya
    [J]. BAYESIAN ANALYSIS, 2017, 12 (01): : 161 - 191
  • [42] BAYESIAN REGULARIZED TOBIT QUANTILE TO CONSTRUCT STUNTING RATE MODEL
    Yanuar, Ferra
    Deva, Athifa Salsabila
    Rudiyanto
    Zetra, Aidinil
    Yan, Chyntia Dwi
    Rosalindari, Arfarani
    Yozza, Hazmira
    [J]. COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2023,
  • [43] Gibbs sampling methods for Bayesian quantile regression
    Kozumi, Hideo
    Kobayashi, Genya
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2011, 81 (11) : 1565 - 1578
  • [44] Brq: an R package for Bayesian quantile regression
    Alhamzawi, Rahim
    Ali, Haithem Taha Mohammad
    [J]. METRON-INTERNATIONAL JOURNAL OF STATISTICS, 2020, 78 (03): : 313 - 328
  • [45] Bayesian Quantile Regression for Big Data Analysis
    Chu, Yuanqi
    Hu, Xueping
    Yu, Keming
    [J]. NEW FRONTIERS IN BAYESIAN STATISTICS, BAYSM 2021, 2022, 405 : 11 - 22
  • [46] Automatic Bayesian quantile regression curve fitting
    Chen, Colin
    Yu, Keming
    [J]. STATISTICS AND COMPUTING, 2009, 19 (03) : 271 - 281
  • [47] Quantile Regression Neural Networks: A Bayesian Approach
    Jantre, S. R.
    Bhattacharya, S.
    Maiti, T.
    [J]. JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2021, 15 (03)
  • [48] Variational Inference for Nonparametric Bayesian Quantile Regression
    Abeywardana, Sachinthaka
    Ramos, Fabio
    [J]. PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 1686 - 1692
  • [49] Quantile Regression Neural Networks: A Bayesian Approach
    S. R. Jantre
    S. Bhattacharya
    T. Maiti
    [J]. Journal of Statistical Theory and Practice, 2021, 15
  • [50] Bayesian Elastic Net Tobit Quantile Regression
    Alhamzawi, Rahim
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2016, 45 (07) : 2409 - 2427