Quantile Regression Neural Networks: A Bayesian Approach

被引:0
|
作者
S. R. Jantre
S. Bhattacharya
T. Maiti
机构
[1] Michigan State University,Department of Statistics and Probability
关键词
Asymmetric Laplace density; Bayesian quantile regression; Bracketing entropy; Feedforward neural network; Hellinger distance; MCMC; Posterior consistency; Sieve asymptotics;
D O I
暂无
中图分类号
学科分类号
摘要
This article introduces a Bayesian neural network estimation method for quantile regression assuming an asymmetric Laplace distribution (ALD) for the response variable. It is shown that the posterior distribution for feedforward neural network quantile regression is asymptotically consistent under a misspecified ALD model. This consistency proof embeds the problem from density estimation domain and uses bounds on the bracketing entropy to derive the posterior consistency over Hellinger neighborhoods. This consistency result is shown in the setting where the number of hidden nodes grow with the sample size. The Bayesian implementation utilizes the normal-exponential mixture representation of the ALD density. The algorithm uses Markov chain Monte Carlo (MCMC) simulation technique - Gibbs sampling coupled with Metropolis–Hastings algorithm. We have addressed the issue of complexity associated with the afore-mentioned MCMC implementation in the context of chain convergence, choice of starting values, and step sizes. We have illustrated the proposed method with simulation studies and real data examples.
引用
收藏
相关论文
共 50 条
  • [1] Quantile Regression Neural Networks: A Bayesian Approach
    Jantre, S. R.
    Bhattacharya, S.
    Maiti, T.
    JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2021, 15 (03)
  • [2] Neural networks for quantile claim amount estimation: a quantile regression approach
    Laporta, Alessandro G.
    Levantesi, Susanna
    Petrella, Lea
    ANNALS OF ACTUARIAL SCIENCE, 2024, 18 (01) : 30 - 50
  • [3] bayesQR: A Bayesian Approach to Quantile Regression
    Benoit, Dries F. .
    van den Poel, Dirk
    JOURNAL OF STATISTICAL SOFTWARE, 2017, 76 (07): : 1 - 32
  • [4] A BAYESIAN APPROACH TO ENVELOPE QUANTILE REGRESSION
    Lee, Minji
    Chakraborty, Saptarshi
    Su, Zhihua
    STATISTICA SINICA, 2022, 32 : 2339 - 2357
  • [5] A Bayesian Nonparametric Approach to Inference for Quantile Regression
    Taddy, Matthew A.
    Kottas, Athanasios
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2010, 28 (03) : 357 - 369
  • [6] Neural Networks for Partially Linear Quantile Regression
    Zhong, Qixian
    Wang, Jane-Ling
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2024, 42 (02) : 603 - 614
  • [7] Bayesian quantile regression
    Yu, KM
    Moyeed, RA
    STATISTICS & PROBABILITY LETTERS, 2001, 54 (04) : 437 - 447
  • [8] A Bayesian Approach to Multiple-Output Quantile Regression
    Guggisberg, Michael
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023, 118 (544) : 2736 - 2745
  • [9] The Expectation-Maximization approach for Bayesian quantile regression
    Zhao, Kaifeng
    Lian, Heng
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 96 : 1 - 11
  • [10] Simultaneous Linear Quantile Regression: A Semiparametric Bayesian Approach
    Tokdar, Surya T.
    Kadane, Joseph B.
    BAYESIAN ANALYSIS, 2012, 7 (01): : 51 - 71