A unified approach to improved Lp hardy inequalities with best constants

被引:177
|
作者
Barbatis, G
Filippas, S
Tertikas, A
机构
[1] Univ Ioannina, Dept Math, GR-45110 Ioannina, Greece
[2] Univ Crete, Dept Appl Math, Iraklion 71409, Greece
[3] Univ Crete, Dept Math, Iraklion 71409, Greece
[4] FORTH, Inst Appl & Computat Math, Iraklion 71110, Greece
关键词
hardy inequalities; best constants; distance function; weighted norms;
D O I
10.1090/S0002-9947-03-03389-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a unified approach to improved L-p Hardy inequalities in R-N. We consider Hardy potentials that involve either the distance from a point, or the distance from the boundary, or even the intermediate case where the distance is taken from a surface of codimension 1 < k < N. In our main result, we add to the right hand side of the classical Hardy inequality a weighted L-p norm with optimal weight and best constant. We also prove non-homogeneous improved Hardy inequalities, where the right hand side involves weighted L-q norms, q not equal p.
引用
收藏
页码:2169 / 2196
页数:28
相关论文
共 50 条
  • [41] Sharp subcritical and critical Lp Hardy inequalities on the sphere
    Abdelhakim, Ahmed A.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2022, 2022 (01):
  • [42] On the best constant of Hardy-Sobolev inequalities
    Adimurthi
    Filippas, Stathis
    Tertikas, Achilles
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (08) : 2826 - 2833
  • [43] Rigidity results with applications to best constants and symmetry of Caffarelli-Kohn-Nirenberg and logarithmic Hardy inequalities
    Jean Dolbeault
    Maria J. Esteban
    Stathis Filippas
    Achilles Tertikas
    Calculus of Variations and Partial Differential Equations, 2015, 54 : 2465 - 2481
  • [44] Rigidity results with applications to best constants and symmetry of Caffarelli-Kohn-Nirenberg and logarithmic Hardy inequalities
    Dolbeault, Jean
    Esteban, Maria J.
    Filippas, Stathis
    Tertikas, Achilles
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (03) : 2465 - 2481
  • [45] A unified divergent approach to Hardy-Poincare inequalities in classical and variable Sobolev spaces
    Di Fratta, Giovanni
    Fiorenza, Alberto
    JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 283 (05)
  • [46] BEST CONSTANTS FOR 2 NONCONVOLUTION INEQUALITIES
    CHRIST, M
    GRAFAKOS, L
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (06) : 1687 - 1693
  • [47] Best constants in Sobolev trace inequalities
    Biezuner, RJ
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 54 (03) : 575 - 589
  • [48] IMPROVED HARDY-RELLICH INEQUALITIES
    Cassano, Biagio
    Cossetti, Lucrezia
    Fanelli, Luca
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2022, 21 (03) : 867 - 889
  • [49] BEST CONSTANTS FOR DISCRETE KOLMOGOROV INEQUALITIES
    KWONG, MK
    ZETTL, A
    HOUSTON JOURNAL OF MATHEMATICS, 1989, 15 (01): : 99 - 119
  • [50] The best constants problem in Sobolev inequalities
    Druet, O
    MATHEMATISCHE ANNALEN, 1999, 314 (02) : 327 - 346