A unified approach to improved Lp hardy inequalities with best constants

被引:177
|
作者
Barbatis, G
Filippas, S
Tertikas, A
机构
[1] Univ Ioannina, Dept Math, GR-45110 Ioannina, Greece
[2] Univ Crete, Dept Appl Math, Iraklion 71409, Greece
[3] Univ Crete, Dept Math, Iraklion 71409, Greece
[4] FORTH, Inst Appl & Computat Math, Iraklion 71110, Greece
关键词
hardy inequalities; best constants; distance function; weighted norms;
D O I
10.1090/S0002-9947-03-03389-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a unified approach to improved L-p Hardy inequalities in R-N. We consider Hardy potentials that involve either the distance from a point, or the distance from the boundary, or even the intermediate case where the distance is taken from a surface of codimension 1 < k < N. In our main result, we add to the right hand side of the classical Hardy inequality a weighted L-p norm with optimal weight and best constant. We also prove non-homogeneous improved Hardy inequalities, where the right hand side involves weighted L-q norms, q not equal p.
引用
收藏
页码:2169 / 2196
页数:28
相关论文
共 50 条
  • [31] Improved Hardy inequalities and weighted Hardy type inequalities with spherical derivatives
    Nguyen Tuan Duy
    Nguyen Lam
    Le Long Phi
    Revista Matemática Complutense, 2022, 35 : 1 - 23
  • [32] Improved Hardy inequalities and weighted Hardy type inequalities with spherical derivatives
    Nguyen Tuan Duy
    Nguyen Lam
    Le Long Phi
    REVISTA MATEMATICA COMPLUTENSE, 2022, 35 (01): : 1 - 23
  • [33] Improved Multipolar Hardy Inequalities
    Cazacu, Cristian
    Zuazua, Enrique
    STUDIES IN PHASE SPACE ANALYSIS WITH APPLICATIONS TO PDES, 2013, 84 : 35 - 52
  • [34] Optimizing Improved Hardy Inequalities
    Filippas, S
    Tertikas, A
    JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 192 (01) : 186 - 233
  • [35] A unified approach to dynamic Hardy-type and Copson-type inequalities
    Saker, Samir H.
    Mahmoud, Ramy R.
    Abdo, Khadega R.
    Krnic, Mario
    BULLETIN DES SCIENCES MATHEMATIQUES, 2022, 174
  • [36] On Exact Constants in Hardy-Littlewood Inequalities
    Motornyi, V. P.
    UKRAINIAN MATHEMATICAL JOURNAL, 2018, 69 (12) : 1891 - 1901
  • [37] Hardy inequalities with optimal constants and remainder terms
    Gazzola, F
    Grunau, HC
    Mitidieri, E
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (06) : 2149 - 2168
  • [38] On the Constants of the Bohnenblust–Hille and Hardy–Littlewood Inequalities
    Gustavo Araújo
    Daniel Pellegrino
    Bulletin of the Brazilian Mathematical Society, New Series, 2017, 48 : 141 - 169
  • [39] Sharp constants in the Hardy-Rellich inequalities
    Yafaev, D
    JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 168 (01) : 121 - 144
  • [40] Lp Hardy's identities and inequalities for Dunkl operators
    Wang, Jianxiong
    ADVANCED NONLINEAR STUDIES, 2022, 22 (01) : 416 - 435