A unified approach to improved Lp hardy inequalities with best constants

被引:177
|
作者
Barbatis, G
Filippas, S
Tertikas, A
机构
[1] Univ Ioannina, Dept Math, GR-45110 Ioannina, Greece
[2] Univ Crete, Dept Appl Math, Iraklion 71409, Greece
[3] Univ Crete, Dept Math, Iraklion 71409, Greece
[4] FORTH, Inst Appl & Computat Math, Iraklion 71110, Greece
关键词
hardy inequalities; best constants; distance function; weighted norms;
D O I
10.1090/S0002-9947-03-03389-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a unified approach to improved L-p Hardy inequalities in R-N. We consider Hardy potentials that involve either the distance from a point, or the distance from the boundary, or even the intermediate case where the distance is taken from a surface of codimension 1 < k < N. In our main result, we add to the right hand side of the classical Hardy inequality a weighted L-p norm with optimal weight and best constant. We also prove non-homogeneous improved Hardy inequalities, where the right hand side involves weighted L-q norms, q not equal p.
引用
收藏
页码:2169 / 2196
页数:28
相关论文
共 50 条
  • [1] Best constants in bipolar Lp Hardy-type inequalities
    Cazacu, Cristian
    Rugina, Teodor
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 530 (01)
  • [2] A NOTE ON THE BEST CONSTANTS IN SOME HARDY INEQUALITIES
    Persson, L. -E.
    Samko, S. G.
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2015, 9 (02): : 437 - 447
  • [3] On best constants in Hardy inequalities with a remainder term
    Cuomo, Salvatore
    Perrotta, Adamaria
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (16) : 5784 - 5792
  • [4] IMPROVED Lp-Lq HARDY INEQUALITIES
    Orazbayev, Almat
    Suragan, Durvudkhan
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2024, 27 (04): : 981 - 990
  • [5] Unified Poincare and Hardy inequalities with sharp constants for convex domains
    Avkhadiev, Farit G.
    Wirths, Karl-Joachim
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2007, 87 (8-9): : 632 - 642
  • [6] Improved Lp-Hardy and Lp-Rellich Inequalities with Magnetic Fields
    Lam, Nguyen
    Lu, Guozhen
    VIETNAM JOURNAL OF MATHEMATICS, 2023, 51 (04) : 971 - 984
  • [7] Hardy Inequalities with Best Constants on Finsler Metric Measure Manifolds
    Wei Zhao
    The Journal of Geometric Analysis, 2021, 31 : 1992 - 2032
  • [8] Best constants in the Hardy-Rellich inequalities and related improvements
    Tertikas, A.
    Zographopoulos, N. B.
    ADVANCES IN MATHEMATICS, 2007, 209 (02) : 407 - 459
  • [9] Hardy Inequalities with Best Constants on Finsler Metric Measure Manifolds
    Zhao, Wei
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (02) : 1992 - 2032
  • [10] Best constants for higher-order Rellich inequalities in Lp (Ω)
    Barbatis, G.
    MATHEMATISCHE ZEITSCHRIFT, 2007, 255 (04) : 877 - 896