On (a,d)-antimagic special trees, unicyclic graphs and complete bipartite graphs

被引:0
|
作者
Nicholas, T [1 ]
Somasundaram, S
Vilfred, V
机构
[1] St Judes Coll, Dept Math, Thuthur 629176, Tamil Nadu, India
[2] Manonmaniam Sundaranar Univ, Dept Math, Tirunelveli, Tamil Nadu, India
关键词
(a; d)-; antimagic; caterpillars; unicyclic graphs;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A connected graph G(V, E) is said to be (a, d)- antimagic if there exist positive integers a and d and a bijection f : E --> {1, 2,...,\E\} such that the induced mapping g(f): V --> N, defined by g (v) = Sigma {f(u,v)\(u, v) is an element of E(G)) is injective and g(f) (V) = {a, a+d, a+2d,..., a+(\V\- 1)d}. In this paper, we mainly investigate (a, d)- antimagic labeling of some special trees, complete bipartite graphs K-mn and categorize (a, d)- antimagic unicyclic graphs.
引用
收藏
页码:207 / 220
页数:14
相关论文
共 50 条