Regular Bipartite Graphs Are Antimagic

被引:54
|
作者
Cranston, Daniel W. [1 ]
机构
[1] Univ Illinois, Urbana, IL 61801 USA
关键词
antimagic graph labeling; bipartite graph; regular graph; graph decomposition; Marriage Theorem;
D O I
10.1002/jgt.20347
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A labeling of a graph G is a bijection from E(G) to the set {1, 2, ... , vertical bar E(G)vertical bar}. A labeling is antimagic if for any distinct vertices u and v, the sum of the labels on edges incident to u is different from the sum of the labels on edges incident to v. We say a graph is antimagic if it has an antimagic labeling. In 1990, Hartsfield and Ringel conjectured that every connected graph other than K-2 is antimagic. In this article, we show that every regular bipartite graph (with degree at least 2) is antimagic. Our technique relies heavily on the Marriage Theorem. (c) 2008 Wiley Periodicals Inc. J Graph Theory 60: 173-192, 2009
引用
收藏
页码:173 / 182
页数:10
相关论文
共 50 条
  • [1] Regular graphs are antimagic
    Berczi, Kristof
    Bernath, Attila
    Vizer, Mate
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2015, 22 (03):
  • [2] Antimagic labeling of biregular bipartite graphs
    Yu, Xiaowei
    [J]. DISCRETE APPLIED MATHEMATICS, 2023, 327 : 47 - 59
  • [3] Antimagic orientation of biregular bipartite graphs
    Shan, Songling
    Yu, Xiaowei
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (04):
  • [4] Antimagic Labeling of Regular Graphs
    Chang, Feihuang
    Liang, Yu-Chang
    Pan, Zhishi
    Zhu, Xuding
    [J]. JOURNAL OF GRAPH THEORY, 2016, 82 (04) : 339 - 349
  • [5] Antimagic Labeling of Some Biregular Bipartite Graphs
    Deng, Kecai
    Li, Yunfei
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2022, 42 (04) : 1205 - 1218
  • [6] Antimagic Labeling for Product of Regular Graphs
    Latchoumanane, Vinothkumar
    Varadhan, Murugan
    [J]. SYMMETRY-BASEL, 2022, 14 (06):
  • [7] Antimagic orientations of even regular graphs
    Li, Tong
    Song, Zi-Xia
    Wang, Guanghui
    Yang, Donglei
    Zhang, Cun-Quan
    [J]. JOURNAL OF GRAPH THEORY, 2019, 90 (01) : 46 - 53
  • [8] Regular Graphs of Odd Degree Are Antimagic
    Cranston, Daniel W.
    Liang, Yu-Chang
    Zhu, Xuding
    [J]. JOURNAL OF GRAPH THEORY, 2015, 80 (01) : 28 - 33
  • [9] On (a,d)-antimagic special trees, unicyclic graphs and complete bipartite graphs
    Nicholas, T
    Somasundaram, S
    Vilfred, V
    [J]. ARS COMBINATORIA, 2004, 70 : 207 - 220
  • [10] Some classes of antimagic graphs with regular subgraphs
    Wang, Tao
    Li, Deming
    Wang, Qing
    [J]. ARS COMBINATORIA, 2013, 111 : 241 - 250