On (a,d)-antimagic special trees, unicyclic graphs and complete bipartite graphs

被引:0
|
作者
Nicholas, T [1 ]
Somasundaram, S
Vilfred, V
机构
[1] St Judes Coll, Dept Math, Thuthur 629176, Tamil Nadu, India
[2] Manonmaniam Sundaranar Univ, Dept Math, Tirunelveli, Tamil Nadu, India
关键词
(a; d)-; antimagic; caterpillars; unicyclic graphs;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A connected graph G(V, E) is said to be (a, d)- antimagic if there exist positive integers a and d and a bijection f : E --> {1, 2,...,\E\} such that the induced mapping g(f): V --> N, defined by g (v) = Sigma {f(u,v)\(u, v) is an element of E(G)) is injective and g(f) (V) = {a, a+d, a+2d,..., a+(\V\- 1)d}. In this paper, we mainly investigate (a, d)- antimagic labeling of some special trees, complete bipartite graphs K-mn and categorize (a, d)- antimagic unicyclic graphs.
引用
收藏
页码:207 / 220
页数:14
相关论文
共 50 条
  • [41] Number of Spanning Trees of Different Products of Complete and Complete Bipartite Graphs
    Daoud, S. N.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [42] ON THE VULNERABILITY OF PERMUTATION GRAPHS OF COMPLETE AND COMPLETE BIPARTITE GRAPHS
    GUICHARD, D
    PIAZZA, B
    STUECKLE, S
    ARS COMBINATORIA, 1991, 31 : 149 - 157
  • [43] Complete bipartite factorisations by complete bipartite graphs
    Martin, N
    DISCRETE MATHEMATICS, 1997, 167 : 461 - 480
  • [44] Revolutionaries and spies on trees and unicyclic graphs
    Cranston, Daniel W.
    Smyth, Clifford D.
    West, Douglas B.
    JOURNAL OF COMBINATORICS, 2012, 3 (02) : 195 - 205
  • [45] ON THE LAPLACIAN SPREAD OF TREES AND UNICYCLIC GRAPHS
    Liu, Muhuo
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2010, 34 : 151 - 159
  • [46] Complete bipartite factorisations by complete bipartite graphs
    Martin, N.
    Discrete Mathematics, 1997, 167-168 : 461 - 480
  • [47] HOMOMORPHISMS OF INFINITE BIPARTITE GRAPHS ONTO COMPLETE BIPARTITE GRAPHS
    ZELINKA, B
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1983, 33 (04) : 545 - 547
  • [48] The Sanskruti index of trees and unicyclic graphs
    Deng, Fei
    Jiang, Huiqin
    Liu, Jia-Bao
    Poklukar, Darja Rupnik
    Shao, Zehui
    Wu, Pu
    Zerovnik, Janez
    OPEN CHEMISTRY, 2019, 17 (01): : 448 - 455
  • [49] On least distance eigenvalues of trees, unicyclic graphs and bicyclic graphs
    Lin, Hongying
    Zhou, Bo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 443 : 153 - 163
  • [50] ON THE MODIFIED RANDIC INDEX OF TREES, UNICYCLIC GRAPHS AND BICYCLIC GRAPHS
    Li, Jianping
    Zhou, Bo
    MISKOLC MATHEMATICAL NOTES, 2012, 13 (02) : 415 - 427