Effects of Dietary Lysine Levels on Growth Performance and Glycolipid Metabolism via the AKT/FoxO1 Pathway in Juvenile Largemouth Bass, Micropterus salmoides

被引:16
|
作者
Huang, Dongyu [1 ]
Liang, Hualiang [2 ]
Ge, Xianping [1 ,2 ]
Zhu, Jian [1 ,2 ]
Li, Songlin [3 ]
Wang, Yongli [4 ]
Ren, Mingchun [1 ,2 ]
Chen, Xiaoru [4 ]
机构
[1] Nanjing Agr Univ, Wuxi Fisheries Coll, Wuxi 214081, Jiangsu, Peoples R China
[2] Chinese Acad Fishery Sci CAFS, Freshwater Fisheries Res Ctr FFRC, Key Lab Genet Breeding Aquat Anim & Aquaculture B, Wuxi 214081, Jiangsu, Peoples R China
[3] Shanghai Ocean Univ, Minist Agr & Rural Affairs Environm Ecol & Fish N, Res Ctr, Shanghai 201306, Peoples R China
[4] Tongwei Co Ltd, Hlth Aquaculture Key Lab Sichuan Prov, Chengdu 610093, Peoples R China
关键词
BLUNT SNOUT BREAM; BODY-COMPOSITION; FEED-UTILIZATION; GENE-EXPRESSION; REQUIREMENT; LIVER; AKT; NUTRITION; CARNITINE; ARGININE;
D O I
10.1155/2022/1372819
中图分类号
S9 [水产、渔业];
学科分类号
0908 ;
摘要
A 56-day feeding experiment was conducted to determine the dietary lysine requirement of juvenile largemouth bass (Micropterus salmoides) and investigate the effects of dietary lysine on growth, whole-body composition, and hepatic gene expression related to glycolipid metabolism via the AKT/FoxO1 pathway. The juveniles (17.34 +/- 0.02 g) were fed six graded lysine levels (2.11% (control), 2.56%, 2.92%, 3.33%, 3.68%, and 4.09%, dry diet). The results showed that the 3.33% dietary lysine level significantly increased the final body weight (FBW), weight gain rate (WGR), and specific growth rate (SGR) and improved the feed conversion ratio (FCR) compared with the control group. The whole-body composition was not significantly affected by dietary lysine levels, while lowest hepatic lipid contents were found in the 2.92% and 3.33% dietary lysine groups. Regarding glycolipid metabolism, compared with the control group, 3.33% dietary lysine improved the protein kinase B (AKT) and inhibited the forkhead box O1 (FoxO1), thus upregulated the pyruvate kinase (PK) mRNA levels to enhance glycolysis. Furthermore, sterol-regulatory element binding protein-1c (SREBP1c) and peroxisome proliferator-activated receptor-gamma (PPAR-gamma) were downregulated by 3.33% dietary lysine, which caused the downregulation of lipid synthesis-related genes acetyl-CoA carboxylase-1 (ACC) and stearyl-CoA desaturase (SCD) mRNA. In addition, 3.33% dietary lysine promoted the expression of the lipolysis-related genes peroxisome proliferator-activated receptor-alpha (PPAR-alpha) and carnitine palmitoyl transferase-1 (CPT1). According to the quadratic regression analysis based on the FCR and SGR values, the optimal dietary lysine levels were estimated to be 3.03% and 3.07% of the diet (6.39% and 6.48% of dietary protein), respectively.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Effects of dietary starch and metformin levels on the growth performance, body composition, hepatic glycolipid metabolism, and liver histology of juvenile largemouth bass Micropterus salmoides
    Liu, Qin-Qin
    Xia, Ru
    Deng, Xin
    Yang, Hui-Jun
    Luo, Li
    Lin, Shi-Mei
    Qin, Chuan-Jie
    Chen, Yong-Jun
    AQUACULTURE, 2023, 573
  • [2] Effects of Dietary Cobalt Levels on Growth Performance, Antioxidant Capacity, and Immune Status of Juvenile Largemouth Bass (Micropterus salmoides)
    Huang, Dongyu
    Jahazi, Joshua Daniel
    Ren, Mingchun
    Zhang, Lu
    Liang, Hualiang
    VETERINARY SCIENCES, 2024, 11 (11)
  • [3] Effects of dietary yeast nucleotides on the growth performance and muscle quality of juvenile largemouth bass (Micropterus salmoides)
    Wang, Yuhui
    Wang, Jiahuang
    Liu, Lihe
    Xu, Hongsen
    Liang, Hongwei
    Wang, Zhongkai
    Gu, Jiajia
    AQUACULTURE REPORTS, 2024, 36
  • [4] Effects of dietary phospholipids on growth performance, fatty acid composition and lipid metabolism of early juvenile largemouth bass (Micropterus salmoides)
    Wang, Shilin
    Zhang, Yu
    Xie, Ruitao
    Zhang, Nihe
    Zhang, Haitao
    Chen, Naisong
    Li, Songlin
    AQUACULTURE RESEARCH, 2022, 53 (16) : 5628 - 5637
  • [5] Dietary lysophospholipids improves growth performance and hepatic lipid metabolism of largemouth bass(Micropterus salmoides)
    Mingxiao Che
    Ziye Lu
    Liang Liu
    Ning Li
    Lina Ren
    Shuyan Chi
    Animal Nutrition, 2023, (02) : 426 - 434
  • [6] Growth and metabolic responses of juvenile largemouth bass (Micropterus salmoides) to dietary vitamin c supplementation levels
    Yusuf, Abdullateef
    Huang, Xuxiong
    Chen, Naisong
    Li, Songlin
    Apraku, Andrews
    Wang, Weilong
    David, Micah Adekunle
    AQUACULTURE, 2021, 534
  • [7] Dietary lysophospholipids improves growth performance and hepatic lipid metabolism of largemouth bass (Micropterus salmoides)
    Che, Mingxiao
    Lu, Ziye
    Liu, Liang
    Li, Ning
    Ren, Lina
    Chi, Shuyan
    ANIMAL NUTRITION, 2023, 13 : 426 - 434
  • [8] Growth and body composition of juvenile largemouth bass Micropterus salmoides in response to dietary protein and energy levels
    Portz, L
    Cyrino, JEP
    Martino, RC
    AQUACULTURE NUTRITION, 2001, 7 (04) : 247 - 254
  • [9] Effects of dietary starch and lipid levels on the protein retention and growth of largemouth bass (Micropterus salmoides)
    Li, Xinyu
    Zheng, Shixuan
    Ma, Xuekun
    Cheng, Kaimin
    Wu, Guoyao
    AMINO ACIDS, 2020, 52 (6-7) : 999 - 1016
  • [10] Effects of High Dietary Starch Levels on the Growth Performance, Liver Function, and Metabolome of Largemouth Bass (Micropterus salmoides)
    Sun, Lihui
    Guo, Jianlin
    Li, Qian
    Jiang, Jianhu
    Chen, Jianming
    Gao, Lingmei
    Yang, Bicheng
    Peng, Jun
    FISHES, 2024, 9 (07)