Nonclassical Degrees of Freedom in the Riemann Hamiltonian

被引:11
|
作者
Srednicki, Mark [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
ZEROS;
D O I
10.1103/PhysRevLett.107.100201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Hilbert-Polya conjecture states that the imaginary parts of the zeros of the Riemann zeta function are eigenvalues of a quantum Hamiltonian. If so, conjectures by Katz and Sarnak put this Hamiltonian in the Altland-Zirnbauer universality class C. This implies that the system must have a nonclassical two-valued degree of freedom. In such a system, the dominant primitive periodic orbits contribute to the density of states with a phase factor of -1. This resolves a previously mysterious sign problem with the oscillatory contributions to the density of the Riemann zeros.
引用
收藏
页数:4
相关论文
共 50 条