Chaotic dynamics and superdiffusion in a Hamiltonian system with many degrees of freedom

被引:32
|
作者
Latora, V
Rapisarda, A
Ruffo, S
机构
[1] Univ Catania, Dipartmento Fis, I-95129 Catania, Italy
[2] Ecole Normale Super Lyon, Phys Lab, F-69394 Lyon 07, France
[3] INFM, Florence, Italy
[4] Ist Nazl Fis Nucl, I-50125 Florence, Italy
来源
PHYSICA A | 2000年 / 280卷 / 1-2期
关键词
Hamiltonian dynamics; deterministic chaos; Lyapunov exponents; relaxation to equilibrium; anomalous diffusion; Levy walks;
D O I
10.1016/S0378-4371(99)00621-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss recent results obtained for the Hamiltonian mean field model. The model describes a system of N fully coupled particles in one dimension and shows a second-order phase transition from a clustered phase to a homogeneous one when the energy is increased. Strong chaos is found in correspondence to the critical point on top of a weak chaotic regime which characterizes the motion at low energies. For a small region around the critical point, we find anomalous (enhanced) diffusion and Levy walks in a transient temporal regime before the system relaxes to equilibrium. (C) 2000 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:81 / 86
页数:6
相关论文
共 50 条