A Comparison of Data-Driven Approaches to Build Low-Dimensional Ocean Models

被引:8
|
作者
Agarwal, Niraj [1 ]
Kondrashov, D. [2 ,3 ]
Dueben, P. [4 ]
Ryzhov, E. [1 ,5 ]
Berloff, P. [1 ,6 ]
机构
[1] Imperial Coll London, Dept Math, London, England
[2] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA USA
[3] Russian Acad Sci, Inst Appl Phys, Nizhnii Novgorod, Russia
[4] ECMWF, Reading, Berks, England
[5] Pacific Oceanol Inst, Vladivostok, Russia
[6] Russian Acad Sci, Inst Numer Math, Moscow, Russia
基金
美国国家科学基金会; 欧盟地平线“2020”; 俄罗斯科学基金会;
关键词
data-driven modeling; reduced order modeling; ocean models; machine learning; STOCHASTIC PRIMITIVE EQUATIONS; PREDICTION; ATMOSPHERE; NOISE; NONLINEARITY; REDUCTION; PARADIGM; DYNAMICS; WEATHER;
D O I
10.1029/2021MS002537
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
We present a comprehensive inter-comparison of linear regression (LR), stochastic, and deep-learning approaches for reduced-order statistical emulation of ocean circulation. The reference data set is provided by an idealized, eddy-resolving, double-gyre ocean circulation model. Our goal is to conduct a systematic and comprehensive assessment and comparison of skill, cost, and complexity of statistical models from the three methodological classes. The model based on LR is considered as a baseline. Additionally, we investigate its additive white noise augmentation and a multi-level stochastic approach, deep-learning methods, hybrid frameworks (LR plus deep-learning), and simple stochastic extensions of deep-learning and hybrid methods. The assessment metrics considered are: root mean squared error, anomaly cross-correlation, climatology, variance, frequency map, forecast horizon, and computational cost. We found that the multi-level linear stochastic approach performs the best for both short- and long-timescale forecasts. The deep-learning hybrid models augmented by additive state-dependent white noise came second, while their deterministic counterparts failed to reproduce the characteristic frequencies in climate-range forecasts. Pure deep learning implementations performed worse than LR and its simple white noise augmentation. Skills of LR and its white noise extension were similar on short timescales, but the latter performed better on long timescales, while LR-only outputs decay to zero for long simulations. Overall, our analysis promotes multi-level LR stochastic models with memory effects, and hybrid models with linear dynamical core augmented by additive stochastic terms learned via deep learning, as a more practical, accurate, and cost-effective option for ocean emulation than pure deep-learning solutions.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] Data-driven models for short-term ocean wave power forecasting
    Ni, Chenhua
    [J]. IET RENEWABLE POWER GENERATION, 2021, 15 (10) : 2228 - 2236
  • [32] Data-driven systems biology approaches
    Chen, Luonan
    [J]. JOURNAL OF MOLECULAR CELL BIOLOGY, 2017, 9 (06) : 435 - 435
  • [33] Data-driven approaches in FinTech: a survey
    Tian, Xin
    He, Jing Selena
    Han, Meng
    [J]. INFORMATION DISCOVERY AND DELIVERY, 2021, 49 (02) : 123 - 135
  • [34] Data-driven Approaches to Edge Caching
    Li, Guangyu
    Shen, Qiang
    Liu, Yong
    Cao, Houwei
    Han, Zifa
    Li, Feng
    Li, Jin
    [J]. PROCEEDINGS OF THE 2018 WORKSHOP ON NETWORKING FOR EMERGING APPLICATIONS AND TECHNOLOGIES (NEAT '18), 2018, : 8 - 14
  • [35] Data-Driven Approaches for Smart Parking
    Bock, Fabian
    Di Martino, Sergio
    Sester, Monika
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2017, PT III, 2017, 10536 : 358 - 362
  • [36] DATA-DRIVEN APPROACHES TO EMPIRICAL DISCOVERY
    LANGLEY, P
    ZYTKOW, JM
    [J]. ARTIFICIAL INTELLIGENCE, 1989, 40 (1-3) : 283 - 312
  • [37] Data-driven approaches to information access
    Dumais, S
    [J]. COGNITIVE SCIENCE, 2003, 27 (03) : 491 - 524
  • [38] Data-driven approaches to the modelling of bioprocesses
    Bernaerts, K
    Van Impe, JF
    [J]. TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2004, 26 (05) : 349 - 372
  • [39] Learning Low-Dimensional Models of Microscopes
    Debarnot, Valentin
    Escande, Paul
    Mangeat, Thomas
    Weiss, Pierre
    [J]. IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2021, 7 : 178 - 190
  • [40] Dynamo transition in low-dimensional models
    Verma, Mahendra K.
    Lessinnes, Thomas
    Carati, Daniele
    Sarris, Ioannis
    Kumar, Krishna
    Singh, Meenakshi
    [J]. PHYSICAL REVIEW E, 2008, 78 (03):