Data-driven Stellar Models

被引:7
|
作者
Green, Gregory M. [1 ]
Rix, Hans-Walter [1 ]
Tschesche, Leon [1 ]
Finkbeiner, Douglas [2 ]
Zucker, Catherine [2 ]
Schlafly, Edward F. [3 ]
Rybizki, Jan [1 ]
Fouesneau, Morgan [1 ]
Andrae, Rene [1 ]
Speagle, Joshua [2 ]
机构
[1] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany
[2] Harvard Smithsonian Ctr Astrophys, Harvard Astron, 60 Garden St, Cambridge, MA 02138 USA
[3] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA
来源
ASTROPHYSICAL JOURNAL | 2021年 / 907卷 / 01期
关键词
Astrostatistics; Neural networks; Stellar photometry; Interstellar dust extinction; MILKY-WAY TOMOGRAPHY; TELESCOPE; SDSS;
D O I
10.3847/1538-4357/abd1dd
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We developed a data-driven model to map stellar parameters (T-eff, log g, and [Fe/H]) accurately and precisely to broadband stellar photometry. This model must, and does, simultaneously constrain the passband-specific dust reddening vector in the Milky Way, R. The model uses a neural network to learn the (de-reddened) absolute magnitude in one band and colors across many bands, given stellar parameters from spectroscopic surveys and parallax constraints from Gaia. To demonstrate the effectiveness of this approach, we train our model on a data set with spectroscopic parameters from LAMOST, APOGEE, and GALAH, Gaia parallaxes, and optical and near-infrared photometry from Gaia, Pan-STARRS 1, Two Micron All Sky Survey and Wide-field Infrared Survey Explorer. Testing the model on these data sets leads to an excellent fit and a precise-and by construction-accurate prediction of the color-magnitude diagrams in many bands. This flexible approach rigorously links spectroscopic and photometric surveys, and also results in an improved, T-eff-dependent R. As such, it provides a simple and accurate method for predicting photometry in stellar evolutionary models. Our model will form a basis to infer stellar properties, distances, and dust extinction from photometric data, which should be of great use in 3D mapping of the Milky Way. Our trained model can be obtained at doi:10.5281/zenodo.3902382.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] A Data-driven Technique for Measuring Stellar Rotation
    Gilhool, Steven H.
    Blake, Cullen H.
    [J]. ASTROPHYSICAL JOURNAL, 2019, 875 (01):
  • [2] THE CANNON: A DATA-DRIVEN APPROACH TO STELLAR LABEL DETERMINATION
    Ness, M.
    Hogg, David W.
    Rix, H. -W.
    Ho, Anna. Y. Q.
    Zasowski, G.
    [J]. ASTROPHYSICAL JOURNAL, 2015, 808 (01):
  • [3] Data-driven models of nonautonomous systems
    Lu, Hannah
    Tartakovsky, Daniel M.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 507
  • [4] Data-Driven Models of Monotone Systems
    Makdesi, Anas
    Girard, Antoine
    Fribourg, Laurent
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (08) : 5294 - 5309
  • [5] Data-Driven Discovery of Closure Models
    Pan, Shaowu
    Duraisamy, Karthik
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2018, 17 (04): : 2381 - 2413
  • [6] DATA-DRIVEN DYNAMIC DECISION MODELS
    Nay, John J.
    Gilligan, Jonathan M.
    [J]. 2015 WINTER SIMULATION CONFERENCE (WSC), 2015, : 2752 - 2763
  • [7] Legitimising data-driven models: exemplification of a new data-driven mechanistic modelling framework
    Mount, N. J.
    Dawson, C. W.
    Abrahart, R. J.
    [J]. HYDROLOGY AND EARTH SYSTEM SCIENCES, 2013, 17 (07) : 2827 - 2843
  • [8] Data-driven stellar parameters for southern TESS FGK targets
    Deacon, N. R.
    Henning, Th.
    Kossakowski, D. E.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 486 (01) : 251 - 265
  • [9] Data-driven models for traffic flow at junctions
    Herty, Michael
    Kolbe, Niklas
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (11) : 8946 - 8968
  • [10] Data-Driven Models for Building Occupancy Estimation
    Golestan, Shadan
    Kazemian, Sepehr
    Ardakanian, Omid
    [J]. E-ENERGY'18: PROCEEDINGS OF THE 9TH ACM INTERNATIONAL CONFERENCE ON FUTURE ENERGY SYSTEMS, 2018, : 277 - 281