Large time behavior of solutions to a quasilinear attraction-repulsion chemotaxis model with nonlinear secretion

被引:2
|
作者
Ren, Guoqiang [1 ,2 ]
Liu, Bin [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Hubei Key Lab Engn Modeling & Sci Comp, Wuhan 430074, Peoples R China
关键词
ASYMPTOTIC-BEHAVIOR; GLOBAL BOUNDEDNESS; BLOW-UP; SYSTEM; DYNAMICS; STABILIZATION;
D O I
10.1063/5.0055105
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we study the large time behavior of a quasilinear attraction-repulsion chemotaxis model with nonlinear secretion: u(t) = del. (D(u) del u - chi phi(u) del v + xi psi(u) del w) + lambda u - mu u(epsilon); 0=triangle v-alpha 1v+beta 1u gamma 1; 0=triangle w-alpha 2w+beta 2u gamma 2, x epsilon Omega omega, t > 0. We show that the global-in-time bounded smooth solution of the system converges exponentially/algebraically to steady state in the large time limit. Those results generalize some of our previous results [G. Ren and B. Liu, Math. Models Methods Appl. Sci. 30(13), 2619-2689 (2020) and G. Ren and B. Liu, J. Differ. Equations 268(8), 4320-4373 (2020)]. Published under an exclusive license by AIP Publishing.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Global dynamics for an attraction-repulsion chemotaxis model with logistic source
    Ren, Guoqiang
    Liu, Bin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (08) : 4320 - 4373
  • [32] Influence of nonlinear production on the global solvability of an attraction-repulsion chemotaxis system
    Viglialoro, Giuseppe
    MATHEMATISCHE NACHRICHTEN, 2021, 294 (12) : 2441 - 2454
  • [33] Global Classical Solutions for a Chemotaxis System of Attraction-Repulsion With Singular Sensitivity
    Josephine, S. Amalorpava
    Karthikeyan, S.
    Shangerganesh, L.
    Yadhavan, K.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025,
  • [34] On an attraction-repulsion chemotaxis system with a logistic source
    Li, Xie
    Xiang, Zhaoyin
    IMA JOURNAL OF APPLIED MATHEMATICS, 2016, 81 (01) : 165 - 198
  • [35] An attraction-repulsion chemotaxis system with logistic source
    Zhang, Qingshan
    Li, Yuxiang
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2016, 96 (05): : 570 - 584
  • [36] Critical mass for an attraction-repulsion chemotaxis system
    Guo, Qian
    Jiang, Zhaoxin
    Zheng, Sining
    APPLICABLE ANALYSIS, 2018, 97 (13) : 2349 - 2354
  • [37] BOUNDEDNESS IN AN ATTRACTION-REPULSION CHEMOTAXIS SYSTEM WITH BOTH NONLINEAR SIGNAL PRODUCTION AND CONSUMPTION
    Wang, Chang-jian
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2024, 13 (05): : 1287 - 1297
  • [38] GLOBAL BOUNDEDNESS IN A QUASILINEAR TWO-SPECIES ATTRACTION-REPULSION CHEMOTAXIS SYSTEM WITH TWO CHEMICALS
    Tian, Miaoqing
    Wang, Shujuan
    Xiao, Xia
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (01): : 197 - 208
  • [39] Boundedness and asymptotic behavior in the higher dimensional fully parabolic attraction-repulsion chemotaxis system with nonlinear diffusion
    Yi, Hong
    Qiu, Shuyan
    Xu, Guangyu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 541 (01)
  • [40] Global existence and boundedness in a quasilinear attraction-repulsion chemotaxis system of parabolic-elliptic type
    Wang, Yilong
    BOUNDARY VALUE PROBLEMS, 2016, : 1 - 22