Large time behavior of solutions to a quasilinear attraction-repulsion chemotaxis model with nonlinear secretion

被引:2
|
作者
Ren, Guoqiang [1 ,2 ]
Liu, Bin [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Hubei Key Lab Engn Modeling & Sci Comp, Wuhan 430074, Peoples R China
关键词
ASYMPTOTIC-BEHAVIOR; GLOBAL BOUNDEDNESS; BLOW-UP; SYSTEM; DYNAMICS; STABILIZATION;
D O I
10.1063/5.0055105
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we study the large time behavior of a quasilinear attraction-repulsion chemotaxis model with nonlinear secretion: u(t) = del. (D(u) del u - chi phi(u) del v + xi psi(u) del w) + lambda u - mu u(epsilon); 0=triangle v-alpha 1v+beta 1u gamma 1; 0=triangle w-alpha 2w+beta 2u gamma 2, x epsilon Omega omega, t > 0. We show that the global-in-time bounded smooth solution of the system converges exponentially/algebraically to steady state in the large time limit. Those results generalize some of our previous results [G. Ren and B. Liu, Math. Models Methods Appl. Sci. 30(13), 2619-2689 (2020) and G. Ren and B. Liu, J. Differ. Equations 268(8), 4320-4373 (2020)]. Published under an exclusive license by AIP Publishing.
引用
收藏
页数:14
相关论文
共 50 条