Crop Selection Method to Maximize Crop Yield Rate using Machine Learning Technique

被引:0
|
作者
Kumar, Rakesh [1 ]
Singh, M. P. [1 ]
Kumar, Prabhat [1 ]
Singh, J. P. [1 ]
机构
[1] NIT Patna, Dept CSE, Patna, Bihar, India
关键词
Climate; RGF (Regularized Greedy Forest); Soil composition; CSM (Crop Selection Method); GBDT (Gradient Boosted Decision Tree); regularization; regression problem; NEURAL-NETWORK;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Agriculture planning plays a significant role in economic growth and food security of agro-based country. Selection of crop(s) is an important issue for agriculture planning. It depends on various parameters such as production rate, market price and government policies. Many researchers studied prediction of yield rate of crop, prediction of weather, soil classification and crop classification for agriculture planning using statistics methods or machine learning techniques. If there is more than one option to plant a crop at a time using limited land resource, then selection of crop is a puzzle. This paper proposed a method named Crop Selection Method (CSM) to solve crop selection problem, and maximize net yield rate of crop over season and subsequently achieves maximum economic growth of the country. The proposed method may improve net yield rate of crops.
引用
下载
收藏
页码:138 / 145
页数:8
相关论文
共 50 条
  • [31] Sugar Crop Forecast Machine learning method
    不详
    CURRENT SCIENCE, 2022, 122 (10): : 1118 - 1119
  • [32] CROP YIELD PREDICTION: AN OPERATIONAL APPROACH TO CROP YIELD MODELING ON FIELD AND SUBFIELD LEVEL WITH MACHINE LEARNING MODELS
    Helber, Patrick
    Bischke, Benjamin
    Habelitz, Peter
    Sanchez, Cristhian
    Pathak, Deepak
    Miranda, Miro
    Najjar, Hiba
    Mena, Francisco
    Siddamsetty, Jayanth
    Arenas, Diego
    Vollmer, Michaela
    Charfuelan, Marcela
    Nuske, Marlon
    Dengel, Andreas
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 2763 - 2766
  • [33] Machine Learning- and Feature Selection-Enabled Framework for Accurate Crop Yield Prediction
    Gupta, Sandeep
    Geetha, Angelina
    Sankaran, K. Sakthidasan
    Zamani, Abu Sarwar
    Ritonga, Mahyudin
    Raj, Roop
    Ray, Samrat
    Mohammed, Hussien Sobahi
    JOURNAL OF FOOD QUALITY, 2022, 2022
  • [34] Coupling machine learning and crop modeling improves crop yield prediction in the US Corn Belt
    Mohsen Shahhosseini
    Guiping Hu
    Isaiah Huber
    Sotirios V. Archontoulis
    Scientific Reports, 11
  • [35] County-scale crop yield prediction by integrating crop simulation with machine learning models
    Sajid, Saiara Samira
    Shahhosseini, Mohsen
    Huber, Isaiah
    Hu, Guiping
    Archontoulis, Sotirios, V
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [36] Coupling machine learning and crop modeling improves crop yield prediction in the US Corn Belt
    Shahhosseini, Mohsen
    Hu, Guiping
    Huber, Isaiah
    Archontoulis, Sotirios V.
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [37] Integration of maximum crop response with machine learning regression model to timely estimate crop yield
    Zhou, Qiming
    Ismaeel, Ali
    GEO-SPATIAL INFORMATION SCIENCE, 2021, 24 (03) : 474 - 483
  • [38] Comparative Analysis of Machine Learning Models for Crop Yield Prediction Across Multiple Crop Types
    Yashraj Patil
    Harikrishnan Ramachandran
    Sridhevi Sundararajan
    P. Srideviponmalar
    SN Computer Science, 6 (1)
  • [39] Development of multistage crop yield estimation model using machine learning and deep learning techniques
    K. S. Aravind
    Ananta Vashisth
    P. Krishnan
    Monika Kundu
    Shiv Prasad
    M. C. Meena
    Achal Lama
    Pankaj Das
    Bappa Das
    International Journal of Biometeorology, 2025, 69 (2) : 499 - 515
  • [40] Machine learning for large-scale crop yield forecasting
    Paudel, Dilli
    Boogaard, Hendrik
    de Wit, Allard
    Janssen, Sander
    Osinga, Sjoukje
    Pylianidis, Christos
    Athanasiadis, Ioannis N.
    AGRICULTURAL SYSTEMS, 2021, 187