CROP YIELD PREDICTION: AN OPERATIONAL APPROACH TO CROP YIELD MODELING ON FIELD AND SUBFIELD LEVEL WITH MACHINE LEARNING MODELS

被引:2
|
作者
Helber, Patrick [1 ]
Bischke, Benjamin [1 ]
Habelitz, Peter [1 ]
Sanchez, Cristhian [2 ,3 ]
Pathak, Deepak [2 ,3 ]
Miranda, Miro [2 ,3 ]
Najjar, Hiba [2 ,3 ]
Mena, Francisco [2 ,3 ]
Siddamsetty, Jayanth [2 ]
Arenas, Diego [2 ]
Vollmer, Michaela [2 ]
Charfuelan, Marcela [2 ]
Nuske, Marlon [2 ]
Dengel, Andreas [2 ,3 ]
机构
[1] Vis Impulse GmbH, Kaiserslautern, Germany
[2] German Res Ctr Artificial Intelligence DFKI, Kaiserslautern, Germany
[3] Univ Kaiserslautern Landau, Kaiserslautern, Germany
关键词
Yield Estimation; Yield Forecasting;
D O I
10.1109/IGARSS52108.2023.10283302
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Accurate and reliable crop yield prediction is a complex task. The yield of a crop depends on a variety of factors whose accurate measurement and modeling is challenging. At the same time, reliable yield prediction is highly desirable for farmers to optimize crop production. In this paper, we introduce a modeling based on remote sensing data and Machine Learning models evaluated on a large-scale dataset to address the challenge of an operational crop yield estimation and forecasting on field and subfield level. With our approach, we aim towards a global yield modeling based on Machine Learning models which operates across crop types without the need for crop-specific modeling. We demonstrate that our approach learns to map in-field variability for all studied crop types. Overall, the predictions have an error (RRMSE) of around 15% and an R-2 value of 0.77 at field level.
引用
下载
收藏
页码:2763 / 2766
页数:4
相关论文
共 50 条
  • [1] Machine Learning as a Tool for Crop Yield Prediction
    P. K. Kutsenogiy
    V. K. Kalichkin
    A. L. Pakul
    S. P. Kutsenogiy
    Russian Agricultural Sciences, 2021, 47 (2) : 188 - 192
  • [2] A Hybrid Approach to Tea Crop Yield Prediction Using Simulation Models and Machine Learning
    Batool, Dania
    Shahbaz, Muhammad
    Asif, Hafiz Shahzad
    Shaukat, Kamran
    Alam, Talha Mahboob
    Hameed, Ibrahim A.
    Ramzan, Zeeshan
    Waheed, Abdul
    Aljuaid, Hanan
    Luo, Suhuai
    PLANTS-BASEL, 2022, 11 (15):
  • [3] Comparative Analysis of Machine Learning Models for Crop's yield Prediction
    Babar, Zaheer Ud Din
    UlAmin, Riaz
    Sarwar, Muhammad Nabeel
    Jabeen, Sidra
    Abdullah, Muhammad
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2022, 22 (05): : 330 - 334
  • [4] Coupling machine learning and crop modeling improves crop yield prediction in the US Corn Belt
    Mohsen Shahhosseini
    Guiping Hu
    Isaiah Huber
    Sotirios V. Archontoulis
    Scientific Reports, 11
  • [5] Coupling machine learning and crop modeling improves crop yield prediction in the US Corn Belt
    Shahhosseini, Mohsen
    Hu, Guiping
    Huber, Isaiah
    Archontoulis, Sotirios V.
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [6] County-scale crop yield prediction by integrating crop simulation with machine learning models
    Sajid, Saiara Samira
    Shahhosseini, Mohsen
    Huber, Isaiah
    Hu, Guiping
    Archontoulis, Sotirios, V
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [7] Comparative Analysis of Machine Learning Models for Crop Yield Prediction Across Multiple Crop Types
    Yashraj Patil
    Harikrishnan Ramachandran
    Sridhevi Sundararajan
    P. Srideviponmalar
    SN Computer Science, 6 (1)
  • [8] Crop Yield Prediction Using Machine Learning Algorithms
    Nigam, Aruvansh
    Garg, Saksham
    Agrawal, Archit
    Agrawal, Parul
    2019 FIFTH INTERNATIONAL CONFERENCE ON IMAGE INFORMATION PROCESSING (ICIIP 2019), 2019, : 125 - 130
  • [9] Crop Yield Prediction using Machine Learning Techniques
    Medar, Ramesh
    Rajpurohit, Vijay S.
    Shweta
    2019 IEEE 5TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2019,
  • [10] Crop yield prediction using machine learning techniques
    Iniyan, S.
    Varma, V. Akhil
    Naidu, Ch Teja
    ADVANCES IN ENGINEERING SOFTWARE, 2023, 175