Crop yield prediction using machine learning techniques

被引:19
|
作者
Iniyan, S. [2 ]
Varma, V. Akhil [1 ]
Naidu, Ch Teja [1 ]
机构
[1] SRM Inst Sci & Technol, Comp Sci & Engn, Chennai 603203, Tamil Nadu, India
[2] SRM Inst Sci & Technol, Dept Comp Technol, Chennai 603203, Tamil Nadu, India
关键词
Machine learning; Lasso regression; Decision tree; Elastic net; Linear regression; Exploratory data analysis; Ridge regression; Partial least square regression; Gradient boosting regression; Long short-term memory;
D O I
10.1016/j.advengsoft.2022.103326
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Machine Learning is a successful dynamic device for foreseeing crop yields, just as for choosing which harvests to plant and what to do about them during the developing season. Since it operates with a large amount of data produced by several variables, the farming system is highly complicated. Methods of machine learning can aid intelligent system decision-making. The following paper investigates a variety of methods for predicting crop yields using a variety of soil and environmental variables. The main purpose of this project is to make a machine learning model make predictions. By taking into account several variables, machine learning algorithms can help farmers decide which crop to grow in addition to increasing yield. Farmers can benefit from yield estimation because it allows them to minimize crop loss and obtain the best prices for their crops. A machine learning model may be descriptive or predictive, depending on the research question and study objectives.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Crop Yield Prediction using Machine Learning Techniques
    Medar, Ramesh
    Rajpurohit, Vijay S.
    Shweta
    [J]. 2019 IEEE 5TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2019,
  • [2] Analysis of agricultural crop yield prediction using statistical techniques of machine learning
    Pant, Janmejay
    Pant, R. P.
    Singh, Manoj Kumar
    Singh, Devesh Pratap
    Pant, Himanshu
    [J]. MATERIALS TODAY-PROCEEDINGS, 2021, 46 : 10922 - 10926
  • [3] Crop Yield Prediction Using Machine Learning Algorithms
    Nigam, Aruvansh
    Garg, Saksham
    Agrawal, Archit
    Agrawal, Parul
    [J]. 2019 FIFTH INTERNATIONAL CONFERENCE ON IMAGE INFORMATION PROCESSING (ICIIP 2019), 2019, : 125 - 130
  • [4] Crop Yield Management System Using Machine Learning Techniques
    Senthilnayaki, B.
    Narashiman, D.
    Mahalakshmi, G.
    Therese, Julie M.
    Devi, A.
    Dharanyadevi, P.
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON MOBILE NETWORKS AND WIRELESS COMMUNICATIONS (ICMNWC), 2021,
  • [5] Using machine learning for crop yield prediction in the past or the future
    Morales, Alejandro
    Villalobos, Francisco J.
    [J]. FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [6] Crop Yield Prediction Using Improved Extreme Learning Machine
    Vashisht, Swati
    Kumar, Praveen
    Trivedi, Munesh Chandra
    [J]. COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS, 2023, 54 (01) : 1 - 21
  • [7] REVIEW OF CROP YIELD ESTIMATION USING MACHINE LEARNING AND DEEP LEARNING TECHNIQUES
    Modi, Anitha
    Sharma, Priyanka
    Saraswat, Deepti
    Mehta, Rachana
    [J]. SCALABLE COMPUTING-PRACTICE AND EXPERIENCE, 2022, 23 (02): : 59 - 80
  • [8] Machine Learning as a Tool for Crop Yield Prediction
    P. K. Kutsenogiy
    V. K. Kalichkin
    A. L. Pakul
    S. P. Kutsenogiy
    [J]. Russian Agricultural Sciences, 2021, 47 (2) : 188 - 192
  • [9] CROP YIELD PREDICTION BASED ON INDIAN AGRICULTURE USING MACHINE LEARNING
    Aravind, T.
    Prieyaa, K. R. Yoghaa
    [J]. INTERNATIONAL JOURNAL OF EARLY CHILDHOOD SPECIAL EDUCATION, 2022, 14 (04) : 401 - 408
  • [10] Crop Yield Prediction Using Machine Learning Approaches on a Wide Spectrum
    Joshua, S. Vinson
    Priyadharson, A. Selwin Mich
    Kannadasan, Raju
    Khan, Arfat Ahmad
    Lawanont, Worawat
    Khan, Faizan Ahmed
    Rehman, Ateeq Ur
    Ali, Muhammad Junaid
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 72 (03): : 5663 - 5679