Crop yield prediction using machine learning techniques

被引:27
|
作者
Iniyan, S. [2 ]
Varma, V. Akhil [1 ]
Naidu, Ch Teja [1 ]
机构
[1] SRM Inst Sci & Technol, Comp Sci & Engn, Chennai 603203, Tamil Nadu, India
[2] SRM Inst Sci & Technol, Dept Comp Technol, Chennai 603203, Tamil Nadu, India
关键词
Machine learning; Lasso regression; Decision tree; Elastic net; Linear regression; Exploratory data analysis; Ridge regression; Partial least square regression; Gradient boosting regression; Long short-term memory;
D O I
10.1016/j.advengsoft.2022.103326
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Machine Learning is a successful dynamic device for foreseeing crop yields, just as for choosing which harvests to plant and what to do about them during the developing season. Since it operates with a large amount of data produced by several variables, the farming system is highly complicated. Methods of machine learning can aid intelligent system decision-making. The following paper investigates a variety of methods for predicting crop yields using a variety of soil and environmental variables. The main purpose of this project is to make a machine learning model make predictions. By taking into account several variables, machine learning algorithms can help farmers decide which crop to grow in addition to increasing yield. Farmers can benefit from yield estimation because it allows them to minimize crop loss and obtain the best prices for their crops. A machine learning model may be descriptive or predictive, depending on the research question and study objectives.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Intelligent Crop Recommender System for Yield Prediction Using Machine Learning Strategy
    Maheswary A.
    Nagendram S.
    Kiran K.U.
    Ahammad S.H.
    Priya P.P.
    Hossain M.A.
    Rashed A.N.Z.
    Journal of The Institution of Engineers (India): Series B, 2024, 105 (04) : 979 - 987
  • [22] Wheat yield prediction using machine learning and advanced sensing techniques
    Pantazi, X. E.
    Moshou, D.
    Alexandridis, T.
    Whetton, R. L.
    Mouazen, A. M.
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2016, 121 : 57 - 65
  • [23] Development of multistage crop yield estimation model using machine learning and deep learning techniques
    Aravind, K. S.
    Vashisth, Ananta
    Krishnan, P.
    Kundu, Monika
    Prasad, Shiv
    Meena, M. C.
    Lama, Achal
    Das, Pankaj
    Das, Bappa
    INTERNATIONAL JOURNAL OF BIOMETEOROLOGY, 2025, 69 (02) : 499 - 515
  • [24] An Empirical Evaluation of Machine Learning Techniques for Crop Prediction
    Mariammal, G.
    Suruliandi, A.
    Raja, S. P.
    Poongothai, E.
    INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2023, 8 (04): : 96 - 104
  • [25] Early crop yield prediction for agricultural drought monitoring using drought indices, remote sensing, and machine learning techniques
    Pandya, Parthsarthi
    Gontia, Narendra Kumar
    JOURNAL OF WATER AND CLIMATE CHANGE, 2023, 14 (12) : 4729 - 4746
  • [26] IoT-Based Crop Yield Prediction System in Indian Sub-continent Using Machine Learning Techniques
    Nithya V.
    Josephine M.S.
    Jeyabalaraja V.
    Remote Sensing in Earth Systems Sciences, 2023, 6 (3-4) : 156 - 166
  • [27] Crop Yield Prediction Using Deep Learning
    Jeny, J. R. V.
    Divya, Phulari
    Varsha, Kolanu
    Mrunalini, Anantha
    Irfan, S. K. M.
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON DATA SCIENCE, MACHINE LEARNING AND APPLICATIONS, VOL 1, ICDSMLA 2023, 2025, 1273 : 1192 - 1199
  • [28] Crop Yield Prediction Based on Bacterial Biomarkers and Machine Learning
    Ma, Li
    Niu, Wenquan
    Li, Guochun
    Du, Yadan
    Sun, Jun
    Siddique, Kadambot H. M.
    JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION, 2024, 24 (02) : 2798 - 2814
  • [29] A Comprehensive Review of Crop Yield Prediction Using Machine Learning Approaches With Special Emphasis on Palm Oil Yield Prediction
    Rashid, Mamunur
    Bari, Bifta Sama
    Yusup, Yusri
    Kamaruddin, Mohamad Anuar
    Khan, Nuzhat
    IEEE ACCESS, 2021, 9 : 63406 - 63439
  • [30] A Hybrid Approach to Tea Crop Yield Prediction Using Simulation Models and Machine Learning
    Batool, Dania
    Shahbaz, Muhammad
    Asif, Hafiz Shahzad
    Shaukat, Kamran
    Alam, Talha Mahboob
    Hameed, Ibrahim A.
    Ramzan, Zeeshan
    Waheed, Abdul
    Aljuaid, Hanan
    Luo, Suhuai
    PLANTS-BASEL, 2022, 11 (15):