Counterintuitive dispersion effect near surface plasmon resonances in Otto structures

被引:2
|
作者
Wang, Lin [1 ]
Wang, Li-Gang [1 ,2 ]
Ye, Lin-Hua [1 ]
Al-Amri, M. [3 ,4 ,5 ]
Zhu, Shi-Yao [2 ]
Zubairy, M. Suhail [2 ,4 ,5 ]
机构
[1] Zhejiang Univ, Dept Phys, Hangzhou 310027, Zhejiang, Peoples R China
[2] Beijing Computat Sci Res Ctr, Beijing 100084, Peoples R China
[3] KACST, Natl Ctr Appl Phys, POB 6086, Riyadh 11442, Saudi Arabia
[4] Texas A&M Univ, Inst Quantum Sci & Engn, College Stn, TX 77843 USA
[5] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA
基金
中国国家自然科学基金;
关键词
WAVES; THIN; PROPAGATION; REFLECTION; EXCITATION; LIQUID; DELAY;
D O I
10.1103/PhysRevA.94.013806
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, we investigate the counterintuitive dispersion effect associated with the poles and zeros of reflection and transmission functions in an Otto configuration when a surface plasmon resonance is excited. We show that the zeros and/or poles in the reflection and transmission functions may move into the upper-half complex-frequency plane (CFP), and these locations of the zeros and poles determine the dispersion properties of the whole structures (i.e., the frequency-dependent change of both reflected and transmitted phases). Meanwhile, we demonstrate various dispersion effects (both normal and abnormal) related to the changes of the poles and zeros in both reflection and transmission functions when considering the properties of metal substrates. For a realistic metal substrate in an Otto structure, there are the optimal thickness and incident angle, which correspond to the transitions of the zeros in the reflection function from the upper-half to lower-half CFP. These properties may be helpful to manipulate light propagation in optical devices.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Nanoparticle plasmon resonances in the near-static limit
    Pedersen, Thomas G.
    Jung, Jesper
    Sondergaard, Thomas
    Pedersen, Kjeld
    [J]. OPTICS LETTERS, 2011, 36 (05) : 713 - 715
  • [42] Eigenmode Decomposition of the Near-Field Enhancement in Localized Surface Plasmon Resonances of Metallic Nanoparticles
    Sandu, Titus
    [J]. PLASMONICS, 2013, 8 (02) : 391 - 402
  • [43] Dispersion control of near-infrared surface plasmon polariton using hyperbolic metamaterials
    Kim, Iltai
    Campione, Salvatore
    Howell, Stephen W.
    Subramania, Ganapathi S.
    Grubbs, Robert K.
    Brener, Igal
    Chen, Hou-Tong
    Fan, Shanhui
    Sinclair, Michael B.
    Luk, Ting S.
    [J]. 2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2013,
  • [44] Localized surface plasmon resonances in aluminum nanodisks
    Langhammer, Christoph
    Schwind, Markus
    Kasemo, Bengt
    Zoric, Igor
    [J]. NANO LETTERS, 2008, 8 (05) : 1461 - 1471
  • [45] Surface plasmon resonances of Ga nanoparticle arrays
    Kang, M.
    Saucer, T. W.
    Warren, M. V.
    Wu, J. H.
    Sun, H.
    Sih, V.
    Goldman, R. S.
    [J]. APPLIED PHYSICS LETTERS, 2012, 101 (08)
  • [46] Surface plasmon resonances in liquid metal nanoparticles
    A. E. Ershov
    V. S. Gerasimov
    A. P. Gavrilyuk
    S. V. Karpov
    [J]. Applied Physics B, 2017, 123
  • [47] Surface plasmon resonances in a branched silver nanorod
    Fujiyoshi, Yoshifumi
    Kurata, Hiroki
    [J]. JOURNAL OF APPLIED PHYSICS, 2018, 124 (09)
  • [48] Chemical Interface Damping of Surface Plasmon Resonances
    Lee, Stephen A.
    Link, Stephan
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2021, 54 (08) : 1950 - 1960
  • [49] Localized surface plasmon resonances of a metal nanoring
    Mokkath, Junais Habeeb
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (41) : 23878 - 23885
  • [50] Surface Plasmon Resonances of Cu Nanowire Arrays
    Duan, J. L.
    Cornelius, T. W.
    Liu, J.
    Karim, S.
    Yao, H. J.
    Picht, O.
    Rauber, M.
    Mueller, S.
    Neumann, R.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (31): : 13583 - 13587