Counterintuitive dispersion effect near surface plasmon resonances in Otto structures

被引:2
|
作者
Wang, Lin [1 ]
Wang, Li-Gang [1 ,2 ]
Ye, Lin-Hua [1 ]
Al-Amri, M. [3 ,4 ,5 ]
Zhu, Shi-Yao [2 ]
Zubairy, M. Suhail [2 ,4 ,5 ]
机构
[1] Zhejiang Univ, Dept Phys, Hangzhou 310027, Zhejiang, Peoples R China
[2] Beijing Computat Sci Res Ctr, Beijing 100084, Peoples R China
[3] KACST, Natl Ctr Appl Phys, POB 6086, Riyadh 11442, Saudi Arabia
[4] Texas A&M Univ, Inst Quantum Sci & Engn, College Stn, TX 77843 USA
[5] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA
基金
中国国家自然科学基金;
关键词
WAVES; THIN; PROPAGATION; REFLECTION; EXCITATION; LIQUID; DELAY;
D O I
10.1103/PhysRevA.94.013806
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, we investigate the counterintuitive dispersion effect associated with the poles and zeros of reflection and transmission functions in an Otto configuration when a surface plasmon resonance is excited. We show that the zeros and/or poles in the reflection and transmission functions may move into the upper-half complex-frequency plane (CFP), and these locations of the zeros and poles determine the dispersion properties of the whole structures (i.e., the frequency-dependent change of both reflected and transmitted phases). Meanwhile, we demonstrate various dispersion effects (both normal and abnormal) related to the changes of the poles and zeros in both reflection and transmission functions when considering the properties of metal substrates. For a realistic metal substrate in an Otto structure, there are the optimal thickness and incident angle, which correspond to the transitions of the zeros in the reflection function from the upper-half to lower-half CFP. These properties may be helpful to manipulate light propagation in optical devices.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Long-range surface plasmon resonances in grating-waveguide structures
    Glasberg, S
    Sharon, A
    Rosenblatt, D
    Friesem, AA
    [J]. APPLIED PHYSICS LETTERS, 1997, 70 (10) : 1210 - 1212
  • [22] Asymmetric surface plasmon resonances revisited as Fano resonances
    Nesterenko, Dmitry, V
    Hayashi, Shinji
    Sekkat, Zouheir
    [J]. PHYSICAL REVIEW B, 2018, 97 (23)
  • [23] Effect of filling the surface texture with metamaterial on spoof surface plasmon dispersion
    Gric, T.
    Pistora, J.
    Cada, M.
    [J]. OPTICAL AND QUANTUM ELECTRONICS, 2016, 48 (04)
  • [24] Effect of filling the surface texture with metamaterial on spoof surface plasmon dispersion
    T. Gric
    J. Pistora
    M. Cada
    [J]. Optical and Quantum Electronics, 2016, 48
  • [25] Surface Plasmon Resonances on Cones and Wedges
    Kettunen, H.
    Chesnel, L.
    Hakula, H.
    Wallen, H.
    Sihvola, A.
    [J]. 2014 8TH INTERNATIONAL CONGRESS ON ADVANCED ELECTROMAGNETIC MATERIALS IN MICROWAVES AND OPTICS (METAMATERIALS), 2014,
  • [26] Multiple surface plasmon resonances and near-infrared field enhancement of gold nanowells
    Li, Kebin
    Clime, Liviu
    Tay, Lilin
    Cui, Bo
    Geissler, Matthias
    Veres, Teodor
    [J]. ANALYTICAL CHEMISTRY, 2008, 80 (13) : 4945 - 4950
  • [27] Surface Plasmon Resonances of Clustered Nanoparticles
    Sandu, Titus
    Vrinceanu, Daniel
    Gheorghiu, Eugen
    [J]. PLASMONICS, 2011, 6 (02) : 407 - 412
  • [28] Surface Plasmon Resonances in Metal Nanoparticles
    Kuzmiak, Vladimir
    Kolinsky, Vratislav
    Zdansky, Karel
    [J]. ICTON: 2009 11TH INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS, VOLS 1 AND 2, 2009, : 410 - 413
  • [29] Surface Plasmon Resonances in Silver Nanostars
    Reyes Gomez, Faustino
    Rubira, Rafael J. G.
    Camacho, Sabrina A.
    Martin, Cibely S.
    da Silva, Robson R.
    Constantino, Carlos J. L.
    Alessio, Priscila
    Oliveira, Osvaldo N., Jr.
    Ricardo Mejia-Salazar, J.
    [J]. SENSORS, 2018, 18 (11)
  • [30] Surface Plasmon Resonances of Clustered Nanoparticles
    Titus Sandu
    Daniel Vrinceanu
    Eugen Gheorghiu
    [J]. Plasmonics, 2011, 6