Schur Polynomials and The Yang-Baxter Equation

被引:46
|
作者
Brubaker, Ben [1 ]
Bump, Daniel [2 ]
Friedberg, Solomon [3 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] Stanford Univ, Dept Math, Stanford, CA 94305 USA
[3] Boston Coll, Dept Math, Chestnut Hill, MA 02467 USA
基金
美国国家科学基金会;
关键词
ALTERNATING SIGN MATRICES; SCHUBERT POLYNOMIALS; MODEL; ALGEBRAS; FORMULAS;
D O I
10.1007/s00220-011-1345-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We describe a parametrized Yang-Baxter equation with nonabelian parameter group. That is, we show that there is an injective map g bar right arrow R(g) from GL(2, C) x GL(1, C) to End(V circle times V), where V is a two-dimensional vector space such that if g, h is an element of G then R-12(g)R-13(gh) R-23(h) = R-23(h) R-13(gh) R-12(g). Here R-ij denotes R applied to the i, j components of V circle times V circle times V. The image of this map consists of matrices whose nonzero coefficients a(1), a(2), b(1), b(2), c(1), c(2) are the Boltzmann weights for the non-field-free six-vertex model, constrained to satisfy a(1)a(2) + b(1)b(2) - c(1)c(2) = 0. This is the exact center of the disordered regime, and is contained within the free fermionic eight-vertex models of Fan andWu. As an application, we show that with boundary conditions corresponding to integer partitions lambda the six-vertex model is exactly solvable and equal to a Schur polynomial s(lambda) times a deformation of the Weyl denominator. This generalizes and gives a new proof of results of Tokuyama and Hamel and King.
引用
收藏
页码:281 / 301
页数:21
相关论文
共 50 条
  • [31] THE YANG-BAXTER MATRIX EQUATION FOR INVOLUTIONS
    Andruszkiewicz, Ryszard R.
    Smoktunowicz, Alicja
    MISKOLC MATHEMATICAL NOTES, 2022, 23 (01) : 61 - 70
  • [32] UNUSUAL SOLUTIONS TO THE YANG-BAXTER EQUATION
    HLAVATY, L
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (07): : 1661 - 1667
  • [33] Nonstandard solutions of the Yang-Baxter equation
    Giaquinto, A
    Hodges, TJ
    LETTERS IN MATHEMATICAL PHYSICS, 1998, 44 (01) : 67 - 75
  • [34] On twisting solutions to the Yang-Baxter equation
    Kulish, PP
    Mudrov, AI
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2000, 50 (01) : 115 - 122
  • [35] Stochasticization of Solutions to the Yang-Baxter Equation
    Aggarwal, Amol
    Borodin, Alexei
    Bufetov, Alexey
    ANNALES HENRI POINCARE, 2019, 20 (08): : 2495 - 2554
  • [36] GRADED SOLUTIONS OF THE YANG-BAXTER RELATION AND LINK POLYNOMIALS
    DEGUCHI, T
    AKUTSU, Y
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (11): : 1861 - 1875
  • [37] Solutions of Yang-Baxter equation with color parameters
    孙晓东
    王世坤
    Science China Mathematics, 1995, (09) : 1105 - 1116
  • [38] Classical Yang-Baxter equation from β-supergravity
    Ilya Bakhmatov
    Edvard T. Musaev
    Journal of High Energy Physics, 2019
  • [39] Solutions of Yang-Baxter equation with color parameters
    孙晓东
    王世坤
    ScienceinChina,SerA., 1995, Ser.A.1995 (09) : 1105 - 1116
  • [40] HAMILTONIAN OPERATORS AND THE CLASSICAL YANG-BAXTER EQUATION
    GELFAND, IM
    DORFMAN, IY
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1982, 16 (04) : 241 - 248