Schur Polynomials and The Yang-Baxter Equation

被引:46
|
作者
Brubaker, Ben [1 ]
Bump, Daniel [2 ]
Friedberg, Solomon [3 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] Stanford Univ, Dept Math, Stanford, CA 94305 USA
[3] Boston Coll, Dept Math, Chestnut Hill, MA 02467 USA
基金
美国国家科学基金会;
关键词
ALTERNATING SIGN MATRICES; SCHUBERT POLYNOMIALS; MODEL; ALGEBRAS; FORMULAS;
D O I
10.1007/s00220-011-1345-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We describe a parametrized Yang-Baxter equation with nonabelian parameter group. That is, we show that there is an injective map g bar right arrow R(g) from GL(2, C) x GL(1, C) to End(V circle times V), where V is a two-dimensional vector space such that if g, h is an element of G then R-12(g)R-13(gh) R-23(h) = R-23(h) R-13(gh) R-12(g). Here R-ij denotes R applied to the i, j components of V circle times V circle times V. The image of this map consists of matrices whose nonzero coefficients a(1), a(2), b(1), b(2), c(1), c(2) are the Boltzmann weights for the non-field-free six-vertex model, constrained to satisfy a(1)a(2) + b(1)b(2) - c(1)c(2) = 0. This is the exact center of the disordered regime, and is contained within the free fermionic eight-vertex models of Fan andWu. As an application, we show that with boundary conditions corresponding to integer partitions lambda the six-vertex model is exactly solvable and equal to a Schur polynomial s(lambda) times a deformation of the Weyl denominator. This generalizes and gives a new proof of results of Tokuyama and Hamel and King.
引用
收藏
页码:281 / 301
页数:21
相关论文
共 50 条
  • [1] Schur Polynomials and The Yang-Baxter Equation
    Ben Brubaker
    Daniel Bump
    Solomon Friedberg
    Communications in Mathematical Physics, 2011, 308 : 281 - 301
  • [2] The Yang-Baxter equation, symmetric functions, and Schubert polynomials
    Fomin, S
    Kirillov, AN
    DISCRETE MATHEMATICS, 1996, 153 (1-3) : 123 - 143
  • [3] 3-JACK POLYNOMIALS AND YANG-BAXTER EQUATION
    Wang, Na
    REPORTS ON MATHEMATICAL PHYSICS, 2023, 91 (01) : 79 - 102
  • [4] THE YANG-BAXTER AND PENTAGON EQUATION
    VANDAELE, A
    VANKEER, S
    COMPOSITIO MATHEMATICA, 1994, 91 (02) : 201 - 221
  • [5] INTRODUCTION TO THE YANG-BAXTER EQUATION
    JIMBO, M
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1989, 4 (15): : 3759 - 3777
  • [6] Braces and the Yang-Baxter Equation
    Cedo, Ferran
    Jespers, Eric
    Okninski, Jan
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 327 (01) : 101 - 116
  • [7] GENERALIZED YANG-BAXTER EQUATION
    KASHAEV, RM
    STROGANOV, YG
    MODERN PHYSICS LETTERS A, 1993, 8 (24) : 2299 - 2309
  • [8] ON THE(COLORED)YANG-BAXTER EQUATION
    Hobby, David
    Iantovics, Barna Laszlo
    Nichita, Florin F.
    BRAIN-BROAD RESEARCH IN ARTIFICIAL INTELLIGENCE AND NEUROSCIENCE, 2010, 1 : 33 - 39
  • [9] Quantum Yang-Baxter Equation, Braided Semigroups, and Dynamical Yang-Baxter Maps
    Matsumoto, Diogo Kendy
    Shibukawa, Youichi
    TOKYO JOURNAL OF MATHEMATICS, 2015, 38 (01) : 227 - 237
  • [10] A Yang-Baxter equation for metaplectic ice
    Brubaker, Ben
    Buciumas, Valentin
    Bump, Daniel
    Gray, Nathan
    COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2019, 13 (01) : 101 - 148