CPSS 2.0: a computational platform update for the analysis of small RNA sequencing data

被引:24
|
作者
Wan, Changlin [1 ]
Gao, Jianing [1 ]
Zhang, Huan [1 ]
Jiang, Xiaohua [1 ]
Zang, Qiguang [2 ]
Ban, Rongjun [1 ]
Zhang, Yuanwei [1 ]
Shi, Qinghua [1 ]
机构
[1] Univ Sci & Technol China, CAS Key Lab Innate Immun & Chron Dis, CAS Ctr Excellence Mol Cell Sci,Collaborat Innova, Sch Life Sci,Mol & Cell Genet Lab,Hefei Natl Lab, Hefei 230027, Anhui, Peoples R China
[2] Univ Sci & Technol China, Sch Informat Sci & Technol, Hefei 230027, Peoples R China
基金
中国国家自然科学基金; 以色列科学基金会;
关键词
D O I
10.1093/bioinformatics/btx066
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
A Summary:Next-generation sequencing has been widely applied to understand the complexity of non-coding RNAs (ncRNAs) in the last decades. Here, we present CPSS 2.0, an updated version of CPSS 1.0 for small RNA sequencing data analysis, with the following improvements: (i) a substantial increase of supported species from 10 to 48; (ii) improved strategies applied to detect ncRNAs; (iii) more ncRNAs can be detected and profiled, such as lncRNA and circRNA; (iv) identification of differentially expressed ncRNAs among multiple samples; (v) enhanced visualization interface containing graphs and charts in detailed analysis results. The new version of CPSS is an efficient bioinformatics tool for users in non-coding RNA research.
引用
收藏
页码:3289 / 3291
页数:3
相关论文
共 50 条
  • [41] PAREameters: a tool for computational inference of plant miRNA-mRNA targeting rules using small RNA and degradome sequencing data
    Thody, Joshua
    Moulton, Vincent
    Mohorianu, Irina
    NUCLEIC ACIDS RESEARCH, 2020, 48 (05) : 2258 - 2270
  • [42] nASAP: A Nascent RNA Profiling Data Analysis Platform
    Wang, Zhi
    Ge, Peng
    Zhou, Xiao-Long
    Shui, Kun-Ming
    Geng, Huichao
    Yang, Jie
    Chen, Jia-Yu
    Wang, Jin
    JOURNAL OF MOLECULAR BIOLOGY, 2023, 435 (14)
  • [43] RMBase v2.0: deciphering the map of RNA modifications from epitranscriptome sequencing data
    Xuan, Jia-Jia
    Sun, Wen-Ju
    Lin, Peng-Hui
    Zhou, Ke-Ren
    Liu, Shun
    Zheng, Ling-Ling
    Qu, Liang-Hu
    Yang, Jian-Hua
    NUCLEIC ACIDS RESEARCH, 2018, 46 (D1) : D327 - D334
  • [44] Using Small RNA Deep Sequencing Data to Detect Human Viruses
    Wang, Fang
    Sun, Yu
    Ruan, Jishou
    Chen, Rui
    Chen, Xin
    Chen, Chengjie
    Kreuze, Jan F.
    Fei, ZhangJun
    Zhu, Xiao
    Gao, Shan
    BIOMED RESEARCH INTERNATIONAL, 2016, 2016
  • [45] Characterizing the cancer-associated microbiome with small RNA sequencing data
    Lee, Wei-Hao
    Chen, Kai-Pu
    Wang, Kai
    Huang, Hsuan-Cheng
    Juan, Hsueh-Fen
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2020, 522 (03) : 776 - 782
  • [46] A comparative analysis of single cell small RNA sequencing data reveals heterogeneous isomiR expression and regulation
    Smith, Christopher Michael
    Hutvagner, Gyorgy
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [47] A comparative analysis of single cell small RNA sequencing data reveals heterogeneous isomiR expression and regulation
    Christopher Michael Smith
    Gyorgy Hutvagner
    Scientific Reports, 12
  • [48] Comprehensive analysis of human small RNA sequencing data provides insights into expression profiles and miRNA editing
    Gong, Jing
    Wu, Yuliang
    Zhang, Xiantong
    Liao, Yifang
    Sibanda, Vusumuzi Leroy
    Liu, Wei
    Guo, An-Yuan
    RNA BIOLOGY, 2014, 11 (11) : 1375 - 1385
  • [49] Computational analysis of bacterial RNA-Seq data
    McClure, Ryan
    Balasubramanian, Divya
    Sun, Yan
    Bobrovskyy, Maksym
    Sumby, Paul
    Genco, Caroline A.
    Vanderpool, Carin K.
    Tjaden, Brian
    NUCLEIC ACIDS RESEARCH, 2013, 41 (14)
  • [50] Computational analysis of RNA structures with chemical probing data
    Ge, Ping
    Zhang, Shaojie
    METHODS, 2015, 79-80 : 60 - 66