Asymptotic behavior of unstable INAR(p) processes

被引:27
|
作者
Barczy, M. [1 ]
Ispany, M. [1 ]
Pap, G. [2 ]
机构
[1] Univ Debrecen, Fac Informat, H-4010 Debrecen, Hungary
[2] Univ Szeged, Bolyai Inst, H-6720 Szeged, Hungary
基金
匈牙利科学研究基金会;
关键词
Unstable INAR(p) processes; Squared Bessel processes; Boston armed robberies data set; VALUED AR(1) MODELS; TIME-SERIES; BRANCHING-PROCESS; IMMIGRATION; INFERENCE;
D O I
10.1016/j.spa.2010.11.005
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper the asymptotic behavior of an unstable integer-valued autoregressive model of order p (INAR(p)) is described. Under a natural assumption it is proved that the sequence of appropriately scaled random step functions formed from an unstable INAR(p) process converges weakly towards a squared Bessel process. We note that this limit behavior is quite different from that of familiar unstable autoregressive processes of order p. An application for Boston armed robberies data set is presented. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:583 / 608
页数:26
相关论文
共 50 条
  • [41] Mixed Poisson INAR(1) processes
    Wagner Barreto-Souza
    [J]. Statistical Papers, 2019, 60 : 2119 - 2139
  • [42] Mixed Poisson INAR(1) processes
    Barreto-Souza, Wagner
    [J]. STATISTICAL PAPERS, 2019, 60 (06) : 2119 - 2139
  • [43] On random coefficient INAR(1) processes
    Alexander Roitershtein
    Zheng Zhong
    [J]. Science China Mathematics, 2013, 56 : 177 - 200
  • [44] A mixed INAR(p) model
    Ristic, Miroslav M.
    Nastic, Aleksandar S.
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2012, 33 (06) : 903 - 915
  • [45] Model-based INAR bootstrap for forecasting INAR(p) models
    Bisaglia, Luisa
    Gerolimetto, Margherita
    [J]. COMPUTATIONAL STATISTICS, 2019, 34 (04) : 1815 - 1848
  • [46] On the theory of periodic multivariate INAR processes
    Santos, Claudia
    Pereira, Isabel
    Scotto, Manuel G.
    [J]. STATISTICAL PAPERS, 2021, 62 (03) : 1291 - 1348
  • [47] Asymptotic behavior of the forecast-assimilation process with unstable dynamics
    Crisan, Dan
    Ghil, Michael
    [J]. CHAOS, 2023, 33 (02)
  • [48] Fully observed INAR(1) processes
    Weiss, Christian H.
    [J]. JOURNAL OF APPLIED STATISTICS, 2012, 39 (03) : 581 - 598
  • [49] On the theory of periodic multivariate INAR processes
    Cláudia Santos
    Isabel Pereira
    Manuel G. Scotto
    [J]. Statistical Papers, 2021, 62 : 1291 - 1348
  • [50] On Asymptotic Normality of Sequential LS-Estimates of Unstable Autoregressive Processes
    Galtchouk, L.
    Konev, V.
    [J]. SEQUENTIAL ANALYSIS-DESIGN METHODS AND APPLICATIONS, 2011, 30 (02): : 117 - 144