On random coefficient INAR(1) processes

被引:0
|
作者
Alexander Roitershtein
Zheng Zhong
机构
[1] Iowa State University,Department of Mathematics
来源
Science China Mathematics | 2013年 / 56卷
关键词
models for count data; thinning models; branching processes; random environment; limit theorems; 60J80; 60K37; 60F05; 60J20;
D O I
暂无
中图分类号
学科分类号
摘要
The random coefficient integer-valued autoregressive process was introduced by Zheng, Basawa, and Datta in 2007. In this paper we study the asymptotic behavior of this model (in particular, weak limits of extreme values and the growth rate of partial sums) in the case where the additive term in the underlying random linear recursion belongs to the domain of attraction of a stable law.
引用
收藏
页码:177 / 200
页数:23
相关论文
共 50 条
  • [1] On random coefficient INAR(1) processes
    Roitershtein, Alexander
    Zhong Zheng
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (01) : 177 - 200
  • [2] On random coefficient INAR(1) processes
    ROITERSHTEIN Alexander
    ZHONG Zheng
    Science China Mathematics, 2013, 56 (01) : 174 - 197
  • [3] RANDOM COEFFICIENT BIVARIATE INAR(1) PROCESS
    Popovic, Predrag M.
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2015, 30 (03): : 263 - 280
  • [4] Iterated scaling limits for aggregation of random coefficient AR(1) and INAR(1) processes
    Nedenyi, Fanni
    Pap, Gyula
    STATISTICS & PROBABILITY LETTERS, 2016, 118 : 16 - 23
  • [5] A New Bivariate Random Coefficient INAR(1) Model with Applications
    Li, Qi
    Chen, Huaping
    Liu, Xiufang
    SYMMETRY-BASEL, 2022, 14 (01):
  • [6] A class of observation-driven random coefficient INAR(1) processes based on negative binomial thinning
    Meiju Yu
    Dehui Wang
    Kai Yang
    Journal of the Korean Statistical Society, 2019, 48 : 248 - 264
  • [7] A class of observation-driven random coefficient INAR(1) processes based on negative binomial thinning
    Yu, Meiju
    Wang, Dehui
    Yang, Kai
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2019, 48 (02) : 248 - 264
  • [8] A Zero-Inflated Geometric INAR(1) Process with Random Coefficient
    Hassan S. Bakouch
    Mehrnaz Mohammadpour
    Masumeh Shirozhan
    Applications of Mathematics, 2018, 63 : 79 - 105
  • [9] A Zero-Inflated Geometric INAR(1) Process with Random Coefficient
    Bakouch, Hassan S.
    Mohammadpour, Mehrnaz
    Shirozhan, Masumeh
    APPLICATIONS OF MATHEMATICS, 2018, 63 (01) : 79 - 105
  • [10] Inference for Random Coefficient INAR(1) Process Based on Frequency Domain Analysis
    Zhang, Haixiang
    Wang, Dehui
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2015, 44 (04) : 1078 - 1100