Noncommutative Momentum and Torsional Regularization

被引:8
|
作者
Poplawski, Nikodem [1 ]
机构
[1] Univ New Haven, Dept Math & Phys, 300 Boston Post Rd, West Haven, CT 06516 USA
关键词
Torsion; Einstein-Cartan theory; Noncommutative momentum; Regularization; Finite renormalization; Vacuum polarization; QUANTUM-FIELD THEORY; GENERAL-RELATIVITY; SPACE; UNIVERSE; SPIN; INVARIANCE; GRAVITY; LENGTH; SCALE;
D O I
10.1007/s10701-020-00357-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that in the presence of the torsion tensor S-ij(k), the quantum commutation relation for the four-momentum, traced over spinor indices, is given by [p(i),p(j)] = 2ihS(ij)(k)p(k). In the Einstein-Cartan theory of gravity, in which torsion is coupled to spin of fermions, this relation in a coordinate frame reduces to a commutation relation of noncommutative momentum space, [p(i),p(j)]= i epsilon(ijk)Up(3)p(k) , where U is a constant on the order of the squared inverse of the Planck mass. We propose that this relation replaces the integration in the momentum space in Feynman diagrams with the summation over the discrete momentum eigenvalues. We derive a prescription for this summation that agrees with convergent integrals: integral d(4)p/(p(2)+Delta)(s)-> 4 pi Us-2 Sigma(infinity)(l=1) integral(pi/2)(0) d phi sin(4)phi n(s-3)/[sin phi+U Delta n](s),where n = root l(l+1) and Delta does not depend on p. We show that this prescription regularizes ultraviolet-divergent integrals in loop diagrams. We extend this prescription to tensor integrals. We derive a finite, gauge-invariant vacuum polarization tensor and a finite running coupling. Including loops from all charged fermions, we find a finite value for the bare electric charge of an electron: approximate to -1.22 e. This torsional regularization may therefore provide a realistic, physical mechanism for eliminating infinities in quantum field theory and making renormalization finite.
引用
收藏
页码:900 / 923
页数:24
相关论文
共 50 条
  • [41] Noncommutative geometry and the regularization problem of 4D quantum field theory
    Grosse, H
    Strohmaier, A
    LETTERS IN MATHEMATICAL PHYSICS, 1999, 48 (02) : 163 - 179
  • [42] Noncommutative Geometry and the Regularization Problem of 4D Quantum Field Theory
    H. Grosse
    A. Strohmaier
    Letters in Mathematical Physics, 1999, 48 : 163 - 179
  • [43] Energy-momentum tensors in renormalizable noncommutative scalar field theory
    Geloun, Joseph Ben
    Hounkonnou, Mahouton Norbert
    PHYSICS LETTERS B, 2007, 653 (2-4) : 343 - 345
  • [44] Energy momentum tensor for translation invariant renormalizable noncommutative field theory
    Baloitcha, Ezinvi
    Lahoche, Vincent
    Samary, Dine Ousmane
    EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (12):
  • [45] Coupling a small torsional oscillator to large optical angular momentum
    Shi, H.
    Bhattacharya, M.
    JOURNAL OF MODERN OPTICS, 2013, 60 (05) : 382 - 386
  • [46] Torsional Mechanical Oscillator Driven by the Orbital Angular Momentum of Sound
    Sanchez-Padilla, Benjamin
    Brasselet, Etienne
    PHYSICAL REVIEW APPLIED, 2020, 13 (06):
  • [47] A new regularization method in 3-dimensional momentum space
    Liu, LG
    Luo, XQ
    Chen, W
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1997, 110 (11): : 1277 - 1280
  • [48] GEOMETRICALLY RELATING MOMENTUM CUT-OFF AND DIMENSIONAL REGULARIZATION
    Agarwala, Susama
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2013, 10 (02)
  • [49] Fractional angular momentum in noncommutative generalized Chern-Simons quantum mechanics
    Zhang, Xi-Lun
    Sun, Yong-Li
    Wang, Qing
    Long, Zheng-Wen
    Jing, Jian
    EUROPEAN PHYSICAL JOURNAL PLUS, 2016, 131 (07):
  • [50] Relativistic kinetic momentum operators, half-rapidities and noncommutative differential calculus
    Mir-Kasimov, R. M.
    PHYSICS OF PARTICLES AND NUCLEI, 2012, 43 (05) : 673 - 675