Noncommutative Momentum and Torsional Regularization

被引:8
|
作者
Poplawski, Nikodem [1 ]
机构
[1] Univ New Haven, Dept Math & Phys, 300 Boston Post Rd, West Haven, CT 06516 USA
关键词
Torsion; Einstein-Cartan theory; Noncommutative momentum; Regularization; Finite renormalization; Vacuum polarization; QUANTUM-FIELD THEORY; GENERAL-RELATIVITY; SPACE; UNIVERSE; SPIN; INVARIANCE; GRAVITY; LENGTH; SCALE;
D O I
10.1007/s10701-020-00357-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that in the presence of the torsion tensor S-ij(k), the quantum commutation relation for the four-momentum, traced over spinor indices, is given by [p(i),p(j)] = 2ihS(ij)(k)p(k). In the Einstein-Cartan theory of gravity, in which torsion is coupled to spin of fermions, this relation in a coordinate frame reduces to a commutation relation of noncommutative momentum space, [p(i),p(j)]= i epsilon(ijk)Up(3)p(k) , where U is a constant on the order of the squared inverse of the Planck mass. We propose that this relation replaces the integration in the momentum space in Feynman diagrams with the summation over the discrete momentum eigenvalues. We derive a prescription for this summation that agrees with convergent integrals: integral d(4)p/(p(2)+Delta)(s)-> 4 pi Us-2 Sigma(infinity)(l=1) integral(pi/2)(0) d phi sin(4)phi n(s-3)/[sin phi+U Delta n](s),where n = root l(l+1) and Delta does not depend on p. We show that this prescription regularizes ultraviolet-divergent integrals in loop diagrams. We extend this prescription to tensor integrals. We derive a finite, gauge-invariant vacuum polarization tensor and a finite running coupling. Including loops from all charged fermions, we find a finite value for the bare electric charge of an electron: approximate to -1.22 e. This torsional regularization may therefore provide a realistic, physical mechanism for eliminating infinities in quantum field theory and making renormalization finite.
引用
收藏
页码:900 / 923
页数:24
相关论文
共 50 条
  • [21] On the energy momentum dispersion in the lattice regularization
    Berg, Bernd A.
    McDargh, Zach
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (12):
  • [22] Energy-momentum tensor in noncommutative gauge theories
    Das, A
    Frenkel, J
    PHYSICAL REVIEW D, 2003, 67 (06)
  • [23] Matrix Quantum Mechanics and Soliton Regularization of Noncommutative Field Theory
    Landi, Giovanni
    Lizzi, Fedele
    Szabo, Richard J.
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2004, 8 (01) : 1 - 82
  • [24] A NEW NONFORMAL NONCOMMUTATIVE CALCULUS: ASSOCIATIVITY AND FINITE PART REGULARIZATION
    Omori, Hideki
    Maeda, Yoshiaki
    Miyazaki, Naoya
    Yoshioka, Akira
    ASTERISQUE, 2008, (321) : 267 - 297
  • [25] Noncommutative geometric regularization (vol 54, pg 5174, 1996)
    Kempf, A
    PHYSICAL REVIEW D, 1997, 55 (02): : 1114 - 1114
  • [26] An energy, momentum and angular momentum conserving scheme for a regularization model of incompressible flow
    Ingimarson, Sean
    JOURNAL OF NUMERICAL MATHEMATICS, 2022, 30 (01) : 1 - 22
  • [27] The energy-momentum tensor in noncommutative gauge field models
    Grimstrup, JM
    Kloiböck, B
    Popp, L
    Schweda, M
    Wickenhauser, M
    Putz, V
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2004, 19 (32): : 5615 - 5624
  • [28] Axial-anomaly in noncommutative QED and Pauli-Villars regularization
    AlMasri, Mohammad Walid
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2019, 34 (26):
  • [29] Noncommutative geometry of angular momentum space U(su(2))
    Batista, E
    Majid, S
    JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (01) : 107 - 137
  • [30] Noncommutative geometrical origin of the energy-momentum dispersion relation
    Watcharangkool, A.
    Sakellariadou, M.
    PHYSICAL REVIEW D, 2017, 95 (02)