Particle Filtering with Progressive Gaussian Approximations to the Optimal Importance Density

被引:0
|
作者
Bunch, Pete [1 ]
Godsill, Simon [1 ]
机构
[1] Univ Cambridge, Dept Engn, Signal Proc & Commun Lab, Cambridge CB2 1PZ, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
A new algorithm, the progressive proposal particle filter, is introduced. The performance of a standard particle filter is highly dependent on the choice of importance density used to propagate the particles through time. The conditional posterior state density is the optimal choice, but this can rarely be calculated analytically or sampled from exactly. Practical particle filters rely on forming approximations to the optimal importance density, frequently using Gaussian distributions, but these are not always effective in highly nonlinear models. The progressive proposal method introduces the effect of each observation gradually and incrementally modifies the particle states so as to achieve an improved approximation to the optimal importance distribution.
引用
收藏
页码:360 / 363
页数:4
相关论文
共 50 条
  • [21] GAUSSIAN SUM QUADRATURE PARTICLE FILTERING
    Li, Liangqun
    Yi, Zhenglong
    Xie, Weixin
    2014 12TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP), 2014, : 234 - 238
  • [22] Quasi-Gaussian particle filtering
    Wu, Yuanxin
    Flu, Dewen
    Wu, Meiping
    Hu, Xiaoping
    COMPUTATIONAL SCIENCE - ICCS 2006, PT 1, PROCEEDINGS, 2006, 3991 : 689 - 696
  • [23] Optimal Importance Density for Position Location Problem with non-Gaussian Noise
    Pishdad, Leila
    Labeau, Fabrice
    2013 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2013, : 2143 - 2148
  • [24] KALMAN FILTERING APPROXIMATIONS IN TRIPLET MARKOV GAUSSIAN SWITCHING MODELS
    Abbassi, Noufel
    Benboudjema, Dalila
    Pieczynski, Wojciech
    2011 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2011, : 77 - 80
  • [25] Optimal filtering of a gaussian signal on the background of almost gaussian noise
    Pinsker, M.S.
    Prelov, V.V.
    Problemy Peredachi Informatsii, 1995, 31 (03): : 3 - 21
  • [26] Visual Tracking via Geometric Particle Filtering on the Affine Group with Optimal Importance Functions
    Kwon, Junghyun
    Lee, Kyoung Mu
    Park, Frank C.
    CVPR: 2009 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-4, 2009, : 991 - +
  • [27] Adaptive Importance Sampling in Particle Filtering
    Smidl, Vaclav
    Hofman, Radek
    2013 16TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2013, : 9 - 16
  • [28] A hybrid importance function for particle filtering
    Huang, YF
    Djuric, PM
    IEEE SIGNAL PROCESSING LETTERS, 2004, 11 (03) : 404 - 406
  • [29] Improved Progressive Gaussian Filtering Using LRKF Priors
    Kurz, Gerhard
    Hanebeck, Uwe D.
    2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC), 2018, : 4255 - 4260
  • [30] Progressive Bayesian Filtering with Coupled Gaussian and Dirac Mixtures
    Frisch, Daniel
    Hanebeck, Uwe D.
    PROCEEDINGS OF 2020 23RD INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2020), 2020, : 278 - 285