A hybrid importance function for particle filtering

被引:16
|
作者
Huang, YF [1 ]
Djuric, PM
机构
[1] Univ Texas, Dept Elect Engn, San Antonio, TX 78249 USA
[2] SUNY Stony Brook, Dept Elect & Comp Engn, Stony Brook, NY 11794 USA
基金
美国国家科学基金会;
关键词
bind detection; non-Gaussian; nonlinear; particle filtering; sequential signal processing;
D O I
10.1109/LSP.2003.821715
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Particle filtering has drawn much attention in recent years due to its capacity to handle nonlinear and non-Gaussian dynamic problems. One crucial issue in particle filtering is the selection of the importance function that generates the particles. In this letter, we propose a new type of importance function that possesses the advantages of the posterior and the prior importance functions. We demonstrate its use on the problem of blind detection in flat fading channels and provide simulation results that show its efficiency and performance.
引用
收藏
页码:404 / 406
页数:3
相关论文
共 50 条
  • [1] Particle Filtering for Blind Equalization Using the Optical Importance Function
    Dai, Songyin
    Wu, Tao
    Yuan, Sijie
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, NETWORKING AND INFORMATION SECURITY (WCNIS), VOL 2, 2010, : 224 - 228
  • [2] A new Particle Filtering algorithm with structurally optimal importance function
    Ait-El-Fquih, Boujemaa
    Desbouvries, Francois
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 3413 - 3416
  • [3] Adaptive Importance Sampling in Particle Filtering
    Smidl, Vaclav
    Hofman, Radek
    [J]. 2013 16TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2013, : 9 - 16
  • [4] Group Importance Sampling for particle filtering and MCMC
    Martino, Luca
    Elvira, Victor
    Camps-Valls, Gustau
    [J]. DIGITAL SIGNAL PROCESSING, 2018, 82 : 133 - 151
  • [5] Particle filtering for stochastic hybrid systems
    Blom, HAP
    Bloem, EA
    [J]. 2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, : 3221 - 3226
  • [6] PARTICLE FILTERING WITH A SOFT DETECTION BASED NEAR-OPTIMAL IMPORTANCE FUNCTION FOR VISUAL TRACKING
    Ameziane, M. Oulad
    Garnier, C.
    Delignon, Y.
    Duflos, E.
    Septier, F.
    [J]. 2015 23RD EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2015, : 594 - 598
  • [7] Particle filter with hybrid importance function for joint symbol detection and phase tracking
    Septier, Francois
    Delignon, Yves
    Menhaj-Rivenq, Atika
    Garnier, Christelle
    [J]. 2006 IEEE 7TH WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS, VOLS 1 AND 2, 2006, : 21 - 25
  • [8] A new importance function for particle filtering and its application to blind detection in flat fading channels
    Huang, YF
    Djuric, PM
    [J]. 2002 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-IV, PROCEEDINGS, 2002, : 1617 - 1620
  • [9] A hybrid tracking framework based on kernel correlation filtering and particle filtering
    Zhao, Zhiqiang
    Feng, Ping
    Guo, Jingjuan
    Yuan, Caihong
    Wang, Tianjiang
    Liu, Fang
    Zhao, Zhijian
    Cui, Zongmin
    Wu, Bin
    [J]. NEUROCOMPUTING, 2018, 297 : 40 - 49
  • [10] Importance Densities for Particle Filtering Using Iterated Conditional Expectations
    Hostettler, Roland
    Tronarp, Filip
    Garcia-Fernandez, Angel F.
    Sarkka, Simo
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 211 - 215