A hybrid importance function for particle filtering

被引:16
|
作者
Huang, YF [1 ]
Djuric, PM
机构
[1] Univ Texas, Dept Elect Engn, San Antonio, TX 78249 USA
[2] SUNY Stony Brook, Dept Elect & Comp Engn, Stony Brook, NY 11794 USA
基金
美国国家科学基金会;
关键词
bind detection; non-Gaussian; nonlinear; particle filtering; sequential signal processing;
D O I
10.1109/LSP.2003.821715
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Particle filtering has drawn much attention in recent years due to its capacity to handle nonlinear and non-Gaussian dynamic problems. One crucial issue in particle filtering is the selection of the importance function that generates the particles. In this letter, we propose a new type of importance function that possesses the advantages of the posterior and the prior importance functions. We demonstrate its use on the problem of blind detection in flat fading channels and provide simulation results that show its efficiency and performance.
引用
收藏
页码:404 / 406
页数:3
相关论文
共 50 条
  • [31] Fault diagnosis of hybrid system with an efficient particle filtering estimation approach
    Zhao, Jianyu
    Zeng, Shengkui
    Guo, Jianbin
    PROCEEDINGS OF 2014 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-2014 HUNAN), 2014, : 140 - 144
  • [32] Online data assimilation of a hybrid flow stress model by particle filtering
    Bambach, Markus
    Gerster, Stephan
    Herty, Michael
    CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2021, 70 (01) : 255 - 260
  • [33] Hybrid SIR Joint Particle filtering under limited sensor resolution
    Blom, Henk A. P.
    Bloem, Edwin A.
    2007 PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOLS 1-4, 2007, : 1707 - 1714
  • [34] Hybrid three-dimensional variation and particle filtering for nonlinear systems
    冷洪泽
    宋君强
    Chinese Physics B, 2013, 22 (03) : 230 - 235
  • [35] A hybrid particle swarm optimization for function optimization
    Yue, N. A.
    Sun, Jigui
    Zhang, Changsheng
    Liu, Yuxi
    2008 PROCEEDINGS OF INFORMATION TECHNOLOGY AND ENVIRONMENTAL SYSTEM SCIENCES: ITESS 2008, VOL 1, 2008, : 679 - 683
  • [36] A Hybrid Particle Swarm Algorithm for Function Optimization
    Yang, Jie
    Xie, Jiahua
    PROCEEDINGS OF THE 2009 2ND INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS, VOLS 1-4, 2009, : 2120 - 2123
  • [37] Particle filtering
    Djuric, PM
    Kotecha, JH
    Zhang, JQ
    Huang, YF
    Ghirmai, T
    Bugallo, MF
    Míguez, J
    IEEE SIGNAL PROCESSING MAGAZINE, 2003, 20 (05) : 19 - 38
  • [38] PARTICLE FLOW FOR PARTICLE FILTERING
    Li, Yunpeng
    Zhao, Lingling
    Coates, Mark
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 3979 - 3983
  • [39] Influence of the observation likelihood function on particle filtering performance in tracking applications
    Lichtenauer, J
    Reinders, M
    Hendriks, E
    SIXTH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION, PROCEEDINGS, 2004, : 767 - 772
  • [40] Reinforcement Learning With Constrained Uncertain Reward Function Through Particle Filtering
    Dogru, Oguzhan
    Chiplunkar, Ranjith
    Huang, Biao
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2022, 69 (07) : 7491 - 7499