A zero-inflated ordered probit model, with an application to modelling tobacco consumption

被引:131
|
作者
Harris, Mark N. [1 ]
Zhao, Xueyan [1 ]
机构
[1] Monash Univ, Dept Econometr & Business Stat, Clayton, Vic 3800, Australia
基金
澳大利亚研究理事会;
关键词
ordered outcomes; discrete data; tobacco consumption; zero-inflated responses;
D O I
10.1016/j.jeconom.2007.01.002
中图分类号
F [经济];
学科分类号
02 ;
摘要
Data for discrete ordered dependent variables are often characterised by "excessive" zero observations which may relate to two distinct data generating processes. Traditional ordered probit models have limited capacity in explaining this preponderance of zero observations. We propose a zero-inflated ordered probit model using a double-hurdle combination of a split probit model and an ordered probit model. Monte Carlo results show favourable performance in finite samples. The model is applied to a consumer choice problem of tobacco consumption indicating that policy recommendations could be misleading if the splitting process is ignored. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:1073 / 1099
页数:27
相关论文
共 50 条
  • [21] Modelling zero-inflated spatio-temporal processes
    Fernandes, Marcus V. M.
    Schmidt, Alexandra M.
    Migon, Helio S.
    [J]. STATISTICAL MODELLING, 2009, 9 (01) : 3 - 25
  • [22] Zero-inflated Poisson factor model with application to microbiome read counts
    Xu, Tianchen
    Demmer, Ryan T.
    Li, Gen
    [J]. BIOMETRICS, 2021, 77 (01) : 91 - 101
  • [23] The seafood basket: Application of zero-inflated model to fish count purchase
    Quagrainie, Kwamena
    de Souza, Simone Valle
    Athnos, April
    Etumnu, Chinonso
    Knudson, William
    Kinnunen, Ronald
    Hitchens, Paul
    [J]. AQUACULTURE, 2023, 565
  • [24] Multivariate Zero-Inflated INAR(1) Model with an Application in Automobile Insurance
    Zhang, Pengcheng
    Chen, Zezhun
    Tzougas, George
    Calderin-Ojeda, Enrique
    Dassios, Angelos
    Wu, Xueyuan
    [J]. NORTH AMERICAN ACTUARIAL JOURNAL, 2024,
  • [25] A Zero-Inflated Regression Model for Grouped Data
    Brown, Sarah
    Duncan, Alan
    Harris, Mark N.
    Roberts, Jennifer
    Taylor, Karl
    [J]. OXFORD BULLETIN OF ECONOMICS AND STATISTICS, 2015, 77 (06) : 822 - 831
  • [26] A zero-inflated overdispersed hierarchical Poisson model
    Kassahun, Wondwosen
    Neyens, Thomas
    Faes, Christel
    Molenberghs, Geert
    Verbeke, Geert
    [J]. STATISTICAL MODELLING, 2014, 14 (05) : 439 - 456
  • [27] Zero-inflated Poisson regression mixture model
    Lim, Hwa Kyung
    Li, Wai Keung
    Yu, Philip L. H.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 71 : 151 - 158
  • [28] Zero-inflated Poisson model with group data
    Yang, Jun
    Zhang, Xin
    [J]. ADVANCED MATERIALS DESIGN AND MECHANICS, 2012, 569 : 627 - 631
  • [29] Testing overdispersion in the zero-inflated Poisson model
    Yang, Zhao
    Hardin, James W.
    Addy, Cheryl L.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (09) : 3340 - 3353
  • [30] A score test for testing a zero-inflated Poisson regression model against zero-inflated negative binomial alternatives
    Ridout, M
    Hinde, J
    Demétrio, CGB
    [J]. BIOMETRICS, 2001, 57 (01) : 219 - 223