Hierarchical trees of unsteady simulation datasets

被引:0
|
作者
Gayer, M [1 ]
Slavik, P [1 ]
机构
[1] Tech Univ Crete, Dept Environm Engn, Khania 73100, Greece
关键词
CFD; real-time and interactive simulation; fluid simulation; unsteady (time-varying) datasets;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We have designed and implemented concept of hierarchical structures consisting of simulation results stored in unsteady (time-varying) datasets. It allows incremental, progressive and easy construction and replaying of various simulation configurations with interactive visualization of results. The ability of modification of simulation boundary conditions is available in every node of the datasets tree. Every interactively selected path in the tree corresponds to one modified simulation solution. We have originally proposed and tested this concept in combustion processes simulation powered by a simple fluid simulator, but it can be easily utilized in general simulation applications, which use unsteady datasets for results storage and replaying.
引用
收藏
页码:303 / 308
页数:6
相关论文
共 50 条
  • [31] Hierarchical clustering in minimum spanning trees
    Yu, Meichen
    Hillebrand, Arjan
    Tewarie, Prejaas
    Meier, Jil
    van Dijk, Bob
    Van Mieghem, Piet
    Stam, Cornelis Jan
    [J]. CHAOS, 2015, 25 (02)
  • [32] Unsteady gas laser simulation
    Madden, TJ
    Miller, JH
    [J]. USERS GROUP CONFERENCE, PROCEEDINGS, 2004, : 190 - 198
  • [33] Simulation of unsteady artificial supercavities
    Feng, Guang
    Chen, Wei-Zheng
    Chu, Xue-Sen
    Wang, Zhi
    Zhang, Ming-Hui
    Chen, Wei-Qi
    [J]. PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON HYDRODYNAMICS (ICHD - 2010), 2010, : 905 - 911
  • [34] Effective data summarization for hierarchical clustering in large datasets
    Patra, Bidyut Kr.
    Nandi, Sukumar
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2015, 42 (01) : 1 - 20
  • [35] Hierarchical model-based clustering for large datasets
    Posse, C
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2001, 10 (03) : 464 - 486
  • [36] Do Datapoints Argue?: Argumentation for Hierarchical Agreement in Datasets
    Bahuguna, Ayush
    Haydar, Sajjad
    Brannstrom, Andreas
    Nieves, Juan Carlos
    [J]. ARTIFICIAL INTELLIGENCE-ECAI 2023 INTERNATIONAL WORKSHOPS, PT 2, XAI3, TACTIFUL, XI-ML, SEDAMI, RAAIT, AI4S, HYDRA, AI4AI, 2023, 2024, 1948 : 291 - 303
  • [37] Efficient Hierarchical Clustering of Large High Dimensional Datasets
    Gilpin, Sean
    Qian, Buyue
    Davidson, Ian
    [J]. PROCEEDINGS OF THE 22ND ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM'13), 2013, : 1371 - 1380
  • [38] Topic-Constrained Hierarchical Clustering for Document Datasets
    Zhao, Ying
    [J]. ADVANCED DATA MINING AND APPLICATIONS, ADMA 2010, PT I, 2010, 6440 : 181 - 192
  • [39] Multilingual and hierarchical classification of large datasets of scientific publications
    Protasiewicz, Jaroslaw
    Stanislawek, Tomasz
    Dadas, Slawomir
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC 2015): BIG DATA ANALYTICS FOR HUMAN-CENTRIC SYSTEMS, 2015, : 1670 - 1675
  • [40] Hierarchical feature extraction for compact representation and classification of datasets
    Schubert, Markus
    Kohlmorgen, Jens
    [J]. NEURAL INFORMATION PROCESSING, PART I, 2008, 4984 : 556 - 565