Do Datapoints Argue?: Argumentation for Hierarchical Agreement in Datasets

被引:0
|
作者
Bahuguna, Ayush [1 ]
Haydar, Sajjad [1 ]
Brannstrom, Andreas [1 ]
Nieves, Juan Carlos [1 ]
机构
[1] Umea Univ, Dept Comp Sci, S-90187 Umea, Sweden
关键词
Formal argumentation; Machine learning; Adversarial learning; Deception detection; POISONING ATTACKS;
D O I
10.1007/978-3-031-50485-3_31
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work aims to utilize quantitative bipolar argumentation to detect deception in machine learning models. We explore the concept of deception in the context of interactions of a party developing a machine learning model with potentially malformed data sources. The objective is to identify deceptive or adversarial data and assess the effectiveness of comparative analysis during different stages of model training. By modeling disagreement and agreement between data points as arguments and utilizing quantitative measures, this work proposes techniques for detecting outliers in data. We discuss further applications in clustering and uncertainty modelling.
引用
收藏
页码:291 / 303
页数:13
相关论文
共 50 条
  • [1] Argumentation Theorists Argue that an Ad is an Argument
    Ripley, M. Louise
    [J]. ARGUMENTATION, 2008, 22 (04) : 507 - 519
  • [2] Argumentation Theorists Argue that an Ad is an Argument
    M. Louise Ripley
    [J]. Argumentation, 2008, 22 : 507 - 519
  • [3] The right to argue: teaching and assessing everyday argumentation skills
    Quintana, Rafael
    Correnti, Richard
    [J]. JOURNAL OF FURTHER AND HIGHER EDUCATION, 2019, 43 (08) : 1133 - 1151
  • [4] Argue to Learn: Accelerated Argumentation-Based Learning
    Ayoobi, H.
    Cao, M.
    Verbrugge, R.
    Verheij, B.
    [J]. 20TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2021), 2021, : 1118 - 1123
  • [5] Argue tuProlog: A Lightweight Argumentation Engine for Agent Applications
    Bryant, Daniel
    Krause, Paul J.
    Vreeswijk, Gerard A. W.
    [J]. COMPUTATIONAL MODELS OF ARGUMENT, 2006, 144 : 27 - +
  • [6] Argue to agree: A case-based argumentation approach
    Heras, Stella
    Jordan, Jaume
    Botti, Vicente
    Julian, Vicente
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2013, 54 (01) : 82 - 108
  • [7] Argumentation and the problem of agreement
    Aikin, Scott F.
    Casey, John
    [J]. SYNTHESE, 2022, 200 (02)
  • [8] Argumentation and the problem of agreement
    Scott F. Aikin
    John Casey
    [J]. Synthese, 2022, 200
  • [9] Hierarchical argumentation
    Modgil, S.
    [J]. LOGICS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2006, 4160 : 319 - 332
  • [10] Why argue? Towards a cost-benefit analysis of argumentation
    Paglieri, Fabio
    Castelfranchi, Cristiano
    [J]. ARGUMENT & COMPUTATION, 2010, 1 (01) : 71 - 91