Do Datapoints Argue?: Argumentation for Hierarchical Agreement in Datasets

被引:0
|
作者
Bahuguna, Ayush [1 ]
Haydar, Sajjad [1 ]
Brannstrom, Andreas [1 ]
Nieves, Juan Carlos [1 ]
机构
[1] Umea Univ, Dept Comp Sci, S-90187 Umea, Sweden
关键词
Formal argumentation; Machine learning; Adversarial learning; Deception detection; POISONING ATTACKS;
D O I
10.1007/978-3-031-50485-3_31
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work aims to utilize quantitative bipolar argumentation to detect deception in machine learning models. We explore the concept of deception in the context of interactions of a party developing a machine learning model with potentially malformed data sources. The objective is to identify deceptive or adversarial data and assess the effectiveness of comparative analysis during different stages of model training. By modeling disagreement and agreement between data points as arguments and utilizing quantitative measures, this work proposes techniques for detecting outliers in data. We discuss further applications in clustering and uncertainty modelling.
引用
收藏
页码:291 / 303
页数:13
相关论文
共 50 条
  • [21] Special Issue on Argumentation in Agreement Technologies
    Modgil, S.
    Toni, F.
    [J]. JOURNAL OF LOGIC AND COMPUTATION, 2012, 22 (05) : 953 - 956
  • [22] VennPlex-A Novel Venn Diagram Program for Comparing and Visualizing Datasets with Differentially Regulated Datapoints
    Cai, Huan
    Chen, Hongyu
    Yi, Tie
    Daimon, Caitlin M.
    Boyle, John P.
    Peers, Chris
    Maudsley, Stuart
    Martin, Bronwen
    [J]. PLOS ONE, 2013, 8 (01):
  • [23] A Decade of Legal Argumentation Mining: Datasets and Approaches
    Zhang, Gechuan
    Nulty, Paul
    Lillis, David
    [J]. NATURAL LANGUAGE PROCESSING AND INFORMATION SYSTEMS (NLDB 2022), 2022, 13286 : 240 - 252
  • [24] Do we argue about one subject?
    Kasavin, I. T.
    [J]. EPISTEMOLOGY & PHILOSOPHY OF SCIENCE-EPISTEMOLOGIYA I FILOSOFIYA NAUKI, 2010, 24 (02): : 54 - 60
  • [25] How do jurors argue with one another?
    Warren, Joshua
    Kuhn, Deanna
    Weinstock, Michael
    [J]. JUDGMENT AND DECISION MAKING, 2010, 5 (01): : 64 - 71
  • [26] Do Off-Label Drug Practices Argue Against FDA Efficacy Requirements? A Critical Analysis of Physicians' Argumentation for Initial Efficacy Requirements
    Klein, Daniel B.
    Tabarrok, Alexander
    [J]. AMERICAN JOURNAL OF ECONOMICS AND SOCIOLOGY, 2008, 67 (05) : 743 - 775
  • [27] A computational model of argumentation in agreement negotiation processes
    Koit, Mare
    Oim, Haldur
    [J]. ARGUMENT & COMPUTATION, 2015, 6 (02) : 101 - 129
  • [28] Hierarchical modeling of agreement
    Vanbelle, Sophie
    Mutsvari, Timothy
    Declerck, Dominique
    Lesaffre, Emmanuel
    [J]. STATISTICS IN MEDICINE, 2012, 31 (28) : 3667 - 3680
  • [29] Reports of personal experiences and stories in argumentation: datasets and analysis
    Falk, Neele
    Lapesa, Gabriella
    [J]. PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), VOL 1: (LONG PAPERS), 2022, : 5530 - 5553
  • [30] Severity of error in hierarchical datasets
    Satwik Srivastava
    Deepak Mishra
    [J]. Scientific Reports, 13