Some Upper Bounds for the Berezin Number of Hilbert Space Operators

被引:18
|
作者
Taghavi, Ali [1 ]
Roushan, Tahere Azimi [1 ]
Darvish, Vahid [2 ]
机构
[1] Univ Mazandaran, Fac Math Sci, Dept Math, POB 47416-1468, Babol Sar, Iran
[2] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing, Jiangsu, Peoples R China
关键词
Berezin number; Numerical radius; Geometric mean; INEQUALITIES;
D O I
10.2298/FIL1914353T
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we obtain some Berezin number inequalities based on the definition of Berezin symbol. Among other inequalities, we show that if A, B be positive definite operators in B(H), and A#B is the geometric mean of them, then ber(2)(A#B) <= ber(A(2)+B-2/2)-1/2 inf (lambda is an element of Omega )zeta((k) over cap (lambda)), where zeta((k) over cap (lambda)) = <(A - B)(k) over cap (lambda),(k) over cap (lambda)>(2), and (k) over cap (lambda) is the normalized reproducing kernel of the space H for lambda belong to some set Omega.
引用
收藏
页码:4353 / 4360
页数:8
相关论文
共 50 条
  • [41] Better bounds on the numerical radii of Hilbert space operators
    Omidvar, Mohsen Erfanian
    Moradi, Hamid Reza
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 604 : 265 - 277
  • [42] COMMUTANTS OF SOME HILBERT SPACE OPERATORS
    SHIELDS, AL
    WALLEN, LJ
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (01): : 250 - &
  • [43] NEW BEREZIN RADIUS UPPER BOUNDS
    Gurdal, Mehmet
    Tapdigoglu, Ramiz
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2023, 49 (02): : 210 - 218
  • [44] New upper bounds for the numerical radius of operators on Hilbert spaces
    Sahoo, Satyajit
    Rout, Nirmal Chandra
    ADVANCES IN OPERATOR THEORY, 2022, 7 (04)
  • [45] New upper bounds for the numerical radius of operators on Hilbert spaces
    Satyajit Sahoo
    Nirmal Chandra Rout
    Advances in Operator Theory, 2022, 7
  • [46] SOME PROPERTIES OF THE SPACE OF COMPACT OPERATORS ON A HILBERT SPACE
    GOLDBERG, S
    MATHEMATISCHE ANNALEN, 1959, 138 (04) : 329 - 331
  • [47] Davis-Wielandt-Berezin radius inequalities of reproducing kernel Hilbert space operators
    Sen, Anirban
    Bhunia, Pintu
    Paul, Kallol
    AFRIKA MATEMATIKA, 2023, 34 (03)
  • [48] Upper bounds on the number of eigenvalues of stationary Schrodinger operators
    Shi, Dai
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (08)
  • [49] REVERSE INEQUALITIES FOR THE BEREZIN NUMBER OF OPERATORS
    Garayev, Mubariz
    Guediri, Hocine
    Altwaijry, Najla
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2022, 48 (02): : 179 - 189
  • [50] BEREZIN NUMBER OF OPERATORS AND RELATED QUESTIONS
    Karaev, Mubariz T.
    Iskenderov, Nizameddin Sh.
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2013, 19 (01): : 68 - 72