Better bounds on the numerical radii of Hilbert space operators

被引:28
|
作者
Omidvar, Mohsen Erfanian [1 ]
Moradi, Hamid Reza [2 ]
机构
[1] Islamic Azad Univ, Mashhad Branch, Dept Math, Mashhad, Razavi Khorasan, Iran
[2] Islamic Azad Univ, Mashhad Branch, Young Researchers & Elite Club, Mashhad, Razavi Khorasan, Iran
关键词
Numerical radius; Operator norm; Operator convex function; Hermite-Hadamard inequality; NORM INEQUALITIES;
D O I
10.1016/j.laa.2020.06.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Kittaneh proved that if A is a bounded linear operator on a complex Hilbert space, then 1/4 parallel to vertical bar A vertical bar(2) + vertical bar A*vertical bar(2)parallel to <= omega(2) (A), where omega(.) and parallel to.parallel to are the numerical radius and the usual operator norm, and vertical bar A vertical bar = (A*A)(1/2). In this paper, we show that 1/4 parallel to vertical bar A vertical bar(2) + vertical bar A vertical bar(2)parallel to <= 1/2 omega(2) (A)+1/8 parallel to(A+A*) (A-A*)parallel to <=omega(2) (A) Meanwhile, we give an improvement of the norm inequality presented by Bhatia and Kittaneh for the positive operators. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:265 / 277
页数:13
相关论文
共 50 条
  • [1] Upper bounds for the numerical radii of powers of Hilbert space operators
    Al-Dolat, Mohammed
    Kittaneh, Fuad
    QUAESTIONES MATHEMATICAE, 2024, 47 (02) : 341 - 352
  • [2] On the p-numerical radii of Hilbert space operators
    Benmakhlouf, Ahlem
    Hirzallah, Omar
    Kittaneh, Fuad
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (15): : 2813 - 2829
  • [3] Upper bounds for the numerical radius of Hilbert space operators
    Akram Mansoori
    Mohsen Erfanian Omidvar
    Khalid Shebrawi
    Rendiconti del Circolo Matematico di Palermo Series 2, 2021, 70 : 1473 - 1481
  • [4] Upper Bounds for the Numerical Radius of Hilbert Space Operators
    Jaafari, Elahe
    Asgari, Mohammad Sadegh
    Hosseini, Mohsen Shah
    Moosavi, Baharak
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2024, 48 (02) : 237 - 245
  • [5] Upper bounds for the numerical radius of Hilbert space operators
    Mansoori, Akram
    Omidvar, Mohsen Erfanian
    Shebrawi, Khalid
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (03) : 1473 - 1481
  • [6] New upper bounds for the numerical radius of Hilbert space operators
    Bhunia, Pintu
    Paul, Kallol
    BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 167
  • [7] Bounds for zeros of a polynomial using numerical radius of Hilbert space operators
    Pintu Bhunia
    Santanu Bag
    Kallol Paul
    Annals of Functional Analysis, 2021, 12
  • [8] Bounds for zeros of a polynomial using numerical radius of Hilbert space operators
    Bhunia, Pintu
    Bag, Santanu
    Paul, Kallol
    ANNALS OF FUNCTIONAL ANALYSIS, 2021, 12 (02)
  • [9] Extremality of bounds for numerical radii of Foguel operators
    Gau, Hwa-Long
    Li, Chi-Kwong
    Wang, Kuo-Zhong
    Wu, Pei Yuan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 528 (01)
  • [10] Bounds of operators on the Hilbert sequence space
    Roopaei, Hadi
    CONCRETE OPERATORS, 2020, 7 (01): : 155 - 165