Smooth minimization of non-smooth functions

被引:1606
|
作者
Nesterov, Y [1 ]
机构
[1] Univ Catholique Louvain, Ctr Operat Res & Econometr, B-1348 Louvain, Belgium
关键词
non-smooth optimization; convex optimization; optimal methods; complexity theory; structural optimization;
D O I
10.1007/s10107-004-0552-5
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper we propose anew approach for constructing efficient schemes for non-smooth convex optimization. It is based on a special smoothing technique, which can be applied to functions with explicit max-structure. Our approach can be considered as an alternative to black-box minimization. From the viewpoint of efficiency estimates, we manage to improve the traditional bounds on the number of iterations of the gradient schemes from O (1/is an element of(2)) to O (1/is an element of), keeping basically the complexity of each iteration unchanged.
引用
收藏
页码:127 / 152
页数:26
相关论文
共 50 条
  • [31] The Besov Subspace Consisting of Most Non-Smooth Functions
    Berezhnoi, E. I.
    [J]. JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2009, 44 (03): : 163 - 171
  • [32] Snap-back repellers in non-smooth functions
    Gardini, L.
    Tramontana, F.
    [J]. REGULAR & CHAOTIC DYNAMICS, 2010, 15 (2-3): : 237 - 245
  • [33] Snap-back repellers in non-smooth functions
    L. Gardini
    F. Tramontana
    [J]. Regular and Chaotic Dynamics, 2010, 15 : 237 - 245
  • [34] Conditional Models for Non-smooth Ranking Loss Functions
    Dubey, Avinava
    Machchhar, Jinesh
    Bhattacharyya, Chiranjib
    Chakrabarti, Soumen
    [J]. 2009 9TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, 2009, : 129 - 138
  • [35] On non-smooth dynamics
    Friedrich Pfeiffer
    [J]. Meccanica, 2008, 43 : 533 - 554
  • [36] On non-smooth dynamics
    Pfeiffer, Friedrich
    [J]. MECCANICA, 2008, 43 (05) : 533 - 554
  • [37] Statistical inference based on non-smooth estimating functions
    Tian, L
    Liu, J
    Zhao, Y
    Wei, LJ
    [J]. BIOMETRIKA, 2004, 91 (04) : 943 - 954
  • [38] Sparse Support Recovery with Non-smooth Loss Functions
    Degraux, Kevin
    Peyre, Gabriel
    Fadili, Jalal M.
    Jacques, Laurent
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [39] High order approximation to non-smooth multivariate functions
    Amir, Anat
    Levin, David
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2018, 63 : 31 - 65
  • [40] On Stability Analysis of Non-Smooth Systems with Density Functions
    Hoshino, Kenta
    [J]. 2019 12TH ASIAN CONTROL CONFERENCE (ASCC), 2019, : 1265 - 1270