The Besov Subspace Consisting of Most Non-Smooth Functions

被引:0
|
作者
Berezhnoi, E. I. [1 ]
机构
[1] Yaroslavl State Univ, Yaroslavl, Russia
关键词
Symmetric space; subspace of the Besov space; non-smooth functions;
D O I
10.3103/S1068362309030029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Under the assumptions that Delta(f, h)(t) = vertical bar f(t + h) - f(t)vertical bar, X is a symmetric space of functions in [0, 1], alpha is an element of (0, 1) and p is an element of [1,8) are any fixed number, by the triple (X, alpha, p) a Besov type space Lambda(alpha)(X,p) is constructed, where the norm is given by the equality parallel to f vertical bar Lambda(alpha)(X,p)parallel to = ((i=1)Sigma(infinity)(2(alpha i)parallel to Delta(f;2(-1))(.)vertical bar X parallel to)(p))(1/p). For any alpha(0) is an element of (0,1), it is shown that there exists an infinite-dimensional, closed subspace of Lambda(alpha)(X,p), such that any non-identically zero function does not belong to the subspace Lambda(alpha)(X,p) with alpha > alpha(0).
引用
收藏
页码:163 / 171
页数:9
相关论文
共 50 条
  • [1] The Besov subspace consisting of most non-smooth functions
    E. I. Berezhnoi
    [J]. Journal of Contemporary Mathematical Analysis, 2009, 44 : 163 - 171
  • [2] Smooth minimization of non-smooth functions
    Nesterov, Y
    [J]. MATHEMATICAL PROGRAMMING, 2005, 103 (01) : 127 - 152
  • [3] Smooth minimization of non-smooth functions
    Yu. Nesterov
    [J]. Mathematical Programming, 2005, 103 : 127 - 152
  • [4] Subspace tracking method for non-smooth yield surface
    Li, Chunguang
    Li, Cuihua
    Zheng, Hong
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 90 : 125 - 134
  • [5] Local variability of non-smooth functions
    Navascues, M. A.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (07) : 2506 - 2518
  • [6] On non-smooth convex distance functions
    Le, NM
    [J]. INFORMATION PROCESSING LETTERS, 1997, 63 (06) : 323 - 329
  • [7] On construction of smooth Lyapunov functions for non-smooth systems
    Wu, Q
    Onyshko, S
    Sepehri, N
    Thornton-Trump, AB
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1998, 69 (03) : 443 - 457
  • [8] Fractional Besov spaces and Hardy inequalities on bounded non-smooth domains
    Cao, Jun
    Jin, Yongyang
    Yu, Zhuonan
    Zhang, Qishun
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2024,
  • [9] Non-parametric models for non-smooth functions
    Müller, HG
    [J]. ASYMPTOTIC METHODS IN PROBABILITY AND STATISTICS: A VOLUME IN HONOUR OF MIKLOS CSORGO, 1998, : 595 - 609
  • [10] NON-SMOOTH DISSIPATION FUNCTIONS AND YIELD CRITERIA
    LUBLINER, J
    [J]. ACTA MECHANICA, 1975, 22 (3-4) : 289 - 293