The Besov Subspace Consisting of Most Non-Smooth Functions

被引:0
|
作者
Berezhnoi, E. I. [1 ]
机构
[1] Yaroslavl State Univ, Yaroslavl, Russia
关键词
Symmetric space; subspace of the Besov space; non-smooth functions;
D O I
10.3103/S1068362309030029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Under the assumptions that Delta(f, h)(t) = vertical bar f(t + h) - f(t)vertical bar, X is a symmetric space of functions in [0, 1], alpha is an element of (0, 1) and p is an element of [1,8) are any fixed number, by the triple (X, alpha, p) a Besov type space Lambda(alpha)(X,p) is constructed, where the norm is given by the equality parallel to f vertical bar Lambda(alpha)(X,p)parallel to = ((i=1)Sigma(infinity)(2(alpha i)parallel to Delta(f;2(-1))(.)vertical bar X parallel to)(p))(1/p). For any alpha(0) is an element of (0,1), it is shown that there exists an infinite-dimensional, closed subspace of Lambda(alpha)(X,p), such that any non-identically zero function does not belong to the subspace Lambda(alpha)(X,p) with alpha > alpha(0).
引用
收藏
页码:163 / 171
页数:9
相关论文
共 50 条
  • [31] Interpolation of non-smooth functions on anisotropic finite element meshes
    Apel, T
    [J]. RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1999, 33 (06): : 1149 - 1185
  • [32] FDR PSO-Based Optimization for Non-smooth Functions
    Anitha, M.
    Subramanian, S.
    Gnanadass, R.
    [J]. INTERNATIONAL ENERGY JOURNAL, 2009, 10 (01): : 37 - 44
  • [33] Non-smooth bifurcation control of non-smooth systems with a canonical form
    Fu Shihui
    Du Ying
    [J]. NONLINEAR DYNAMICS, 2015, 81 (1-2) : 773 - 782
  • [34] Homogeneity, non-smooth atoms and Besov spaces of generalised smoothness on quasi-metric spaces
    Caetano, Antonio M.
    Lopes, Sofia
    [J]. DISSERTATIONES MATHEMATICAE, 2009, (460) : 5 - +
  • [35] Deep Neural Networks Learn Non-Smooth Functions Effectively
    Imaizumi, Masaaki
    Fukumizu, Kenji
    [J]. 22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89 : 869 - 878
  • [36] Critical points of non-smooth functions with a weak compactness condition
    Marano, Salvatore A.
    Motreanu, Dumitru
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 358 (01) : 189 - 201
  • [37] Semiparametric M-estimation with non-smooth criterion functions
    Laurent Delsol
    Ingrid Van Keilegom
    [J]. Annals of the Institute of Statistical Mathematics, 2020, 72 : 577 - 605
  • [38] Semiparametric M-estimation with non-smooth criterion functions
    Delsol, Laurent
    Van Keilegom, Ingrid
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2020, 72 (02) : 577 - 605
  • [39] An Efficient Algorithm for Minimizing Multi Non-Smooth Component Functions
    Pham, Minh
    Ninh, Anh
    Le, Hoang
    Liu, Yufeng
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2021, 30 (01) : 162 - 170
  • [40] On non-smooth dynamics
    Friedrich Pfeiffer
    [J]. Meccanica, 2008, 43 : 533 - 554